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Introduction
Measuring magnetic gradient field anomalies have been used 

to map regions of differing crustal magnetization, both induced and 
remanent. To record the gradients over large segments of Europe and 
particularly the Kursh Magnetic Anomaly (KMA) satellite data are 
essential. Ten years of the CHAMP mission are used in this study but 
the more recent three satellite Swarm mission, launched in November 
2013 will be able to determine the field gradients directly.  Our study 
should be considered as a base line from which Swarm and future 
mission will serve as a reference. 

Source of the Kursk Magnetic Anomaly
The exploitation of iron deposits is of a great economic importance. 

The Kursk Magnetic Anomaly is located 400 km south of Moscow it 
is one of the largest magnetic anomaly on Earth. The Proterozoic iron 
ore deposits are located in a NNW-SSE oriented complex syncline 
which is superimposed on the Voronezh Bulge anteclise. The Voronezh 
Bulge is bordered by the Ryazan-Saratov and Pripyat-Dnieper-Donetsk 
aulacogens Shchipansky and Bogdanova [1].  The extent of the anomaly 
is approximately 190,000 km2 and its crustal depth is between 0.5 - 3.0 
km. According to Heiland [2] the anomaly was discovered by Smirnov 
in 1874. The discussion of the anomaly is described by the early works 
of Lasareff [3], Haalck [4] and more recent investigations by Lapina [5], 
Taylor and Frawley [6], and Rotanova [7]. Due to its extent and large 
magnetization it can be detected by satellite measurements (Magsat, 
Taylor and Frawley 1987; The resultant magnetization is 3 Am-1 (Taylor 
and Frawley [6]. Our inversion computations are based on their value. 
The direction of the resultant magnetization is 47° East declination 67° 
down inclination. The Kursk magnetic anomaly was computed 324 km 
altitude from CHAMP measurements Figure 1 Kis et al. [8].

Development of the Iron-Ore Deposits
The texture of iron ore bodies can be banded iron formation (BIF) 

and/or granular iron formation (GIF), Bekker et al. [9]. These marine 
sediments were formed in the Archean and Paleoproterozoic. Their 
maximum age is 2.6 ca. Ga. The BIF were dominant in the Archean and 
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Abstract
We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic 

Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were 
done to determine how the magnetic field observations data from the new ESA/Swarm satellites could be utilized to 
determine the structure of the magnetization of the Earth’s crust, especially in the region of the KMA. Ten years of 
CHAMP data were used to simulate the Swarm data. An initial east magnetic anomaly gradient map of Europe was 
computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. 
The vertical gradient of the KMA was also determined using Hilbert transforms. Inversion of the total KMA was 
derived using Simplex and Simulated Annealing algorithms. The depths of the upper and lower boundaries are 
calculated downward from the 324 km elevation of the satellite. Our resulting inversion depth model is a horizontal 
quadrangle. The maximum errors are determined by the model parameter errors. 
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Figure 1: Kursk total magnetic anomaly map computed from CHAMP satellite 
data at 324 km altitude and plotted in an Albers Equal area conic projection. 
C. I.=2 nT. 
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earliest Paleoproterozoic while GIF were in the later Paleoproterozoic. 
A summary of these geological processes which formed the Kursk 
iron-ore structures are given in Voskresenskaya [10], Alexandrov [11], 
Shchipansky and Bogdanova [1], Bekker et al. [9], Kovács and Pálfy [12].

These deposits contain considerable qualities of iron in siliceous 
banded structures. One theory is that the iron originated from marine 
and submarine volcanic activities or the possible from mantle plumes 
near the sea bottom. The precipitation of iron depends on the redox 
conditions of the environment, since the reduced Fe (II) remains as 
a liquid while the oxide Fe (III) precipitates in anoxic setting. The 
formation of iron deposits was prevented by the Great Oxidation 
Event ca. 2.4 Ga. The reductive environment of the hydrosphere ended 
and the oxygen content increased. This event was due to the decline 
of volcanic activities. The production of BIF’s may have reached a 
maximum at ca 1.85 Ga, since the magmatic activity was greater at this 
time. The composition of BIFs and GIFs indicates that it is probably of 
submarine origin.

Three possible oxidative processes are summarized by Bekker 
et al. [9]. The first description: the origin of the oxygen is from a 
photosynthetic process of cyanobacteria in a thin oxidative zone in the 
upper layer of the sea.. Under this layer there are some anoxic water 
columns where Fe (III) precipitates. According to the second version 
the iron oxidizing bacteria live in an anoxic environment. These proto-
bacteria are able to absorb water and carbon dioxide. The third process: 
ultraviolet photons oxidize the Fe (II) liquid to Fe (III) solids. Bekker et 
al. [9] state that the third process is less probable.

Determining CHAMP Magnetic Anomaly Gradients 
The gradients of the magnetic field can be either determined 

directly from the two side by side lower orbiting SWARM satellites. The 
gradients of the magnetic field can also be computed from the CHAMP 
anomalies. 

Previously we Taylor et al. [13] calculated the horizontal gradients 
over the Kursk magnetic anomaly. In this study the vertical, north and 
east gradients will be computed. 

CHAMP magnetic anomalies over the European region and the 
KMA were calculated at 324 km altitude. These anomalies are plotted 
in a spherical polar coordinate system Kis et al. [8] (Figure 2). 

The numerical horizontal gradients are calculated (from the 
anomaly data plotted in Figure 2) when the data are in the same 
latitude but different longitude (the longitude distances will be 1, 2, and 
4 degrees, respectively).  The spherical distance ∆ between two data 
values is given by the spherical triangle cosine theorem:

( )2 1cos cos cos sin sin cosϑ ϑ ϑ ϑ λ λ∆= + −                            (1) 

Where 
1cosd R −= ∆
 is the polar distance, λ2 and λ1 are the two longitudes, 

respectively. The distance of these two data is given by the equation:
1cosd R −= ∆                                                                                       (2) 

Where R is the Earth’s spherical radius, 6371.2 km + 324 km. The 
Eastern gradients are approximated by the simple equation of

( ) ( )2 1, , , ,T R T R
d

ϑ λ ϑ λ−                                                                (3)

where T indicates the total magnetic anomaly. The East gradients 
determined by this method are shown in Figs. 3, 4 and 5. The longitude 
distance, λ2-λ1 was 1° the East gradients are shown in Figure 3. In 
this case the d distance varies between 88.86 and 49.75 km due to the 
meridional convergence. The longitudinal distance is 2° in Figure 4, 
and distance d is between 177.71 and 99.51 km, while the distance d is 
changed between 355.42 and 199.02 km. It can be seen from Figures 3-5 
that the appropriate spherical distances will be 1° or 2° for the gradient 
determination for the SWARM anomalies.

The second method for computing the gradients is based on the 
application of the transfer and weight functions of the x-, y- and z- axes 
Kis and Puszta, [14]. The transfer functions of the above mentioned 
gradients are given by Blakely [15]:

( ) ( ) ( ) ( )1!22 2, 2 , , 2 , , 2dx x y x dy x y y dz x y x yS f f j f S f f j f S f f f fπ π π= = = +
 
(4)

Where Sdx, Sdy and Sdz are the transfer functions of the x-, y- and 
z- gradients; fx and fy are the spatial frequencies, j is the imaginary unit. 
Gaussian low-pass window of:

( ) ( )2 2 2

, x yk f fw
x yS f f e

− +
=                                                                           (5)

 

Is applied for the above mentioned transfer functions, where k is 
the appropriate parameter of the windowed transfer functions. The 
weight functions of the windowed transfer functions are: Figure 2: Total magnetic anomaly map over part of Europe at 324 km. C. I.= 2nT. 

EEast 

Figure 3: East gradient contour interval is 0.2 nT/km spherical distance is 1 
degree.
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Where M is the confluent hypergeometric function (Slater, 1976). The 
development of the (6) – (8) functions is given by Kis and Puszta [14]. 

If the gradients are computed by the above method than the CHAMP 
anomalies should be transformed from the spherical polar coordinate 
system to the Cartesian coordinate system. The zero of the Descartes 
coordinate system is placed at an altitude of 324 km and at latitude 
48.75° and longitude 36.25°. The transformation is given by Kis et al. 
[16]. The windowed gradients are computed in the Cartesian coordinate 
system and the next step is their transformation into the spherical polar 
coordinate system. These gradients are shown in the Figures 6-8 in an 
Albers’ projection. These gradients emphasize the depth variation or 
change in magnetization of the source or both. These results are not 
determined unambiguously from the gradients. The gradients in Fig. 6 
show the Northeast- Southwest elongation of the Kursk anomalies while 
Fig. 7 illustrates the East-West variation. The vertical gradient, Figure 8 
displays a Northwest-Southeast directional asymmetry. 

The third method for calculating the vertical gradient is using the 
Hilbert transform. The Hilbert transform was named by G. H. Hardy 
(1932), the English mathematician, out of deference to D. Hilbert, the 
German mathematician. Nabighian [17,18] Nabighian and Hansen [19] 
Guspi and Novara [20] applied Hilbert transforms to the analysis of 
potential fields.

Let us consider the equation:

( ) ( )1/2 1/22 2 2 2

yx

x y x y

jfjfT T TF F F
z x yf f f f

 ∂ ∂ ∂   =− −     
∂ ∂ ∂     + +

                     (9)

Figure 4: East gradient of European total magnetic anomalies (figure 2) at 324 
km altitude (Albers projection) Spherical distance is 2 degrees.

Figure 5: East Gradient of European total magnetic anomalies (Figure 2) 
spherical distance is 4 degrees. 

Figure 6: North gradient of KMA (Fig. 1 on an Albers’ projection). C.I.=0.015nT/km. 

Figure 7: East gradient of KMA (Fig. 1) in Albers’ projection. C. I.=0.015nT/km .
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Given by Nabighian [18], where F is the Fourier transform. This 
equation can be expressed in a simpler form:

Where H1 and H2 are the Hilbert transform, that is:

1 2
T T TF H F H F
z x y

 ∂ ∂ ∂   = +     
∂ ∂ ∂     

                                          (10)

( ) ( )
1 21/2 1/22 2 2 2

and yx

x y x y

jfjf
H H

f f f f
=− =−

+ +
                        (11)

The inverse Fourier transform of Equation (9) is:

( ) ( )
1

1/2 3/22 2 2 2

1
2

x

x y

jf xF
f f x yπ

−
 

− = 
 + + 

                                                       (12)

and

( ) ( )
1

1/2 3/22 2 2 2

1
2

y

x y

jf yF
f f x yπ

−
 

− = 
 + + 

                                                 (13) 

These inverse Fourier transforms are given by Nabighian [18] 
in his Appendix A. The CHAMP magnetic anomaly field (Fig. 1) 
is transformed from the spherical polar coordinate system to the 
Descartes coordinate system. Now the Hilbert transform is computed 
in the spherical polar coordinate system and the vertical gradients 
given in Figures 8 and 9, they illustrate virtually the same results.

Inversion of the Kursk Magnetic Anomaly
The Bayesian inference was applied to the inversion of the Kursk 

Magnetic Anomaly. The Bayesian inference is widely used in the 
inversion procedures and is summarized by Box and Tiao [21,22], 
Tarantola [23], Duijndam [23,24], Menke [25], Gregory [26], Kis et al. 
[16] and Kis et al. [8].

The Kursk Magnetic Anomaly are shown in the spherical polar 
coordinate system (Figures 10-13). The inversion procedure is 
applied in the Descartes coordinate system so the earlier mentioned 
transformation should be used. The result is given in the Descartes 
coordinate system that was computed from the CHAMP data.

The forward model from the inversion is a quadrangle with 
horizontal upper and lower levels we computed the anomaly using 
Plouff’s [27] method. This is an idealized model of the Kursk source 
[28-33]. We used 3 Am-1 average magnetization given by Taylor and 
Frawley [6] and the average direction of magnetization inclination 
47°down and 67°East declination given by Bhattacharyya.

The basic equation of the Bayesian inference is:

( ) ( ) ( )| |   , p p p=m d d m m                                                    (14)

Where p (m|d) is the pa posteriori conditional probability density, p 
(d|m) is the likelihood conditional probability density, p(m) is the pa 
priori probability density. The vector m is the estimated parameters of 
the forward model and the vector d the measured CHAMP magnetic 
anomalies. The pa posteriori conditional probability density for Gaussian 
multivariate distribution can be expressed in the following form:

( ) ( )

( ) ( )( ) ( ) ( )( )

  1  

1

1 
2

1 , , , , , ,   ,   
2

Ta posteriori a priori a priori
m

Tmeasured calculated measured calculated
D

p exp

exp x y x y x y x y

−

−

 ∝ − − − 
 

 − − − 
 

m m C m m

d T m C d T m
     (15)

where vector ma priory is the parameters estimated by the interpreter, 
Cm is the covariance matrix of the estimated parameters, vector dmeasured 
is the measured CHAMP anomalies, Tcalculated (x,y,m) is the calculated 
values at the coordinate (x,y), calculated for the m parameters, CD is the 
covariance matrix of the CHAMP measured anomalies, superscript T 
the transposed vector.

The pa posteriori conditional probability density for a Laplacian 
distribution is: 

( ) ( ) 
 

1 1
2 2
m D

, , ,
  .

a priori measured calculated
a posteriori

x y x y
p exp exp

  
− −  

∝ − −  
  

   

m m d T m

C C

               (16)

We want to maximize the pa posteriori probability density given 
by the equations (15) and (16) as a function of the parameter m. This 
is equivalent to minimizing the sum of exponent of the equations (15) 
and (16). The functions E (m) which will be minimized for multivariate 
Gaussian parameter distribution are:

( ) ( ) ( ) 1  (  )  ( ,a priori T a priori measured
mE x y−= − − +m m m C m m d

( ) ( ) ( )( )1, , )   ,  , ,  calculated T measured calculated
Dx y x y x y−− −T m C d T m              (17)

For the multivariate Laplacian parameter distribution:

324 km altitude (Albers projection)   Spherical  distance is 2 degrees

Figure 8: Vertical gradient of KMA (Figure 1.) C.I.=0.02 nT/km.

Figure 9: Vertical gradient of KMA (Figure 1) computed by Hilbert transform, 
C.II=0.02nT/km. 
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Figure 10: Computed model in Cartesian coordinates data have a Gaussian distribution with the minimum problem being solved using the simplex method. The table 
shows the determined parameter values and their maximum error. 

Figure 11: Computed model in Cartesian coordinates, the data have Gaussian distribution with the minimum problem being solved using the simulated annealing 
method. Table shows the calculated parameter values and their maximum error. 

Figure 12: Computed model in Cartesian coordinates, , the data have a Laplace distribution with the minimum problem being solved by the simplex method. The results 
are given in tabular form with the determined parameter values and their maximum error. 
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( )
( ) ( ) é á í

1/2 1/2

, , ,
   .   

a priori m rt sz m tottx y x y
E

− −
= +

m D

m m d T m
m

C C
               (18)

The E(m) functions equations (17) and (18) will be minimized 
using the regularization suggested by Tikhonov and Arsenin (1977) is:

( ) ( ) ( ) 1  (  )  ( ,a priori T a priori measured
mE x y−= − − +m m m C m m d

( ) ( ) ( )( )1 2
1, , )   ,  , ,  ( )   calculated T measured calculated

D i ix y x y x y λ−
+− − + −T m C d T m m m        (19)

and

( )
( ) ( ) é á í

11/2 1/2

, , ,
  ë  ,

a priori m rt sz m tott

i i

x y x y
E +

− −
= + + −

m D

m m d T m
m m m

C C
             (20) 

Where λ  is the regularization parameter. According to the earlier 
investigations Kis et al. [8] the appropriate value of λ is between 1 – 10.

The minimum problem is solved by the simplex Walsh [28] and 
simulated annealing Kirkpatrick et al. [29] methods. In the present 
investigation the a priori covariance matrix is a diagonal one whose 
variances is 10 km2, the likelihood covariance matrix is also diagonal 
one whose variances is 2 nT2. The determined models are visualized in 
the model values are presented in Table 1 for the Descartes coordinate 
system. The maximum errors are determined by the model parameter 
errors.

Conclusion
The three methods for the determination of the gradients of the 

satellite magnetic anomaly data (at an altitude of 324 km) over the 
KMA are presented in spherical polar coordinates. All of them resolve 
the anomalies and they show the complex structure of its source. Both 
the windowed vertical gradient and the vertical gradient by the Hilbert 
transform give very similar results. All of the gradient methods can be 
applied. Three inversions (for Gauss distribution and the parameters 
determined by the simplex method; Gaussian distribution and the 
parameters determined by simulated annealing method; Laplacian 
distribution and the parameters determined by simulated annealing 
method) give comparable result within their maximum errors. 
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