
Detecting and Optimizing the App Testing Techniques and their Complexities
with Software Maintenance

Michael Sicard*

Department of Information Systems and Computer Science, The National University of Singapore, Lower Kent Ridge Road, Singapore

DESCRIPTION
Software maintenance is crucial to the lifespan, dependability, 
and adaptability of software systems. Although software 
development's early stages receive most of the attention, 
maintenance is what keeps software running smoothly and 
improves it over time. Software maintenance is the process of 
modifying a software product after its initial release to correct 
faults, to improve performance or other attributes, or to adapt it 
to a modified environment. Its significance cannot be overstated, 
as it directly influences the success and sustainability of software 
applications. After a software product is released, it is inevitable 
that bugs and errors will be discovered. Maintenance activities 
are crucial for identifying and rectifying these issues, ensuring the 
stability and reliability of the software. Software does not exist in 
a static environment. Changes in technology, operating systems, 
or user requirements necessitate adjustments to the software. 
Maintenance allows the software to adapt and remain relevant in 
an ever-evolving landscape. As user needs evolve, there is a 
constant demand for new features and improvements. Maintenance 
activities facilitate the incorporation of enhancements, keeping 
the software competitive and aligned with user expectations.

Continuous monitoring and optimization of software performance 
are vital to ensure efficient and responsive operation. The main 
goals of maintenance activities are to locate and remove lines, 
increase resource efficiency, and improve system performance as 
a whole. Despite its critical role, software maintenance is not 
without challenges. These challenges often stem from the 
inherent complexity of software systems and the dynamic nature 
of the technological landscape. Many organizations depend on 
legacy systems that have been in use for an extended period. 
Maintaining and updating these systems can be challenging due 
to outdated technologies, lack of documentation, and compatibility 
issues with modern environments. This is particularly true in the 
rapidly evolving field of technology. Ensuring that maintenance 
teams possess the necessary skills to work on both existing and 
emerging technologies is a perpetual challenge. Maintenance 
activities can contribute significantly to the overall cost of a software

project. Balancing the need for ongoing maintenance with 
budget constraints requires careful planning and resource 
allocation. Inadequate communication and documentation 
might make maintenance more difficult. When the original 
developers are not available, understanding the software's 
intricacies becomes challenging, leading to longer resolution 
times and increased costs.

Several methodologies guide the execution of software 
maintenance activities. These methodologies help teams 
structure their efforts, manage resources efficiently, and achieve 
the desired outcomes. Corrective Maintenance also known as 
bug fixing, corrective maintenance involves identifying and 
rectifying errors or faults in the software. This reactive approach 
addresses issues as they arise, aiming to restore the software to a 
functional state. Adaptive maintenance focuses on making 
adjustments to the software to accommodate changes in the 
environment, such as operating system upgrades or hardware 
migrations. This proactive approach ensures the software remains 
compatible and operational in evolving conditions. Perfective 
maintenance involves improving the software's performance, 
functionality, or user experience. This proactive approach aims to 
enhance the software's capabilities and responsiveness based on 
user feedback and evolving requirements. Preventive 
maintenance anticipates potential issues and aims to address 
them before they manifest. This includes activities such as code 
refactoring, performance monitoring, and security audits to 
ensure the long-term health of the software. As technology 
advances, new trends and approaches emerge in the field of 
software maintenance. Understanding and leveraging these 
trends can enhance the efficiency and effectiveness of 
maintenance activities. The integration of automation and 
Artificial Intelligence (AI) in software maintenance is gaining 
prominence. Automated testing, bug detection, and code 
refactoring tools streamline repetitive tasks, allowing 
maintenance teams to focus on more complex and strategic 
aspects. DevOps, emphasizing collaboration between development 
and operations teams, has become integral to modern software 
maintenance.

Journal of Information Technology &
Software Engineering

Perspective

Correspondence to: Michael Sicard, Department of Information Systems and Computer Science, The National University of Singapore, Lower Kent Ridge 

Road, Singapore, E-mail: sicamichael@NUS.sg

Received: 25-Oct-2023, Manuscript No. JITSE-23-28442; Editor assigned: 30-Oct-2023, PreQC No. JITSE-23-28442 (PQ); Reviewed: 13-Nov-2023, QC No. 

JITSE-23-28442; Revised: 20-Nov-2023, Manuscript No. JITSE-23-28442 (R); Published: 27-Nov-2023, DOI: 10.35248/2165-7866.23.13.362

Citation: Sicard M (2023) Detecting and Optimizing the App Testing Techniques and their Complexities with Software Maintenance. J Inform Tech Softw 

Eng. 13:362.

Copyright: © 2023 Sicard M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Inform Tech Softw Eng, Vol.13 Iss.6 No:1000362 1



of software applications. Its importance extends far beyond the 
initial development phase, encompassing bug rectification, 
adaptation to changing environments, feature enhancements, 
and performance optimization. The evolving trends in automation, 
AI, DevOps practices, cloud-based maintenance, and 
containerization signify a shift toward more efficient, agile, and 
scalable approaches to software maintenance. However, the 
challenges associated with legacy systems, skill obsolescence, cost 
considerations, and communication gaps require careful navigation.

Sicard M

Cloud computing has transformed the way software is deployed 
and maintained. Cloud-based maintenance provides scalable 
infrastructure, facilitates remote collaboration, and ensures 
seamless updates across distributed environments. Containerization 
and micro services architectures enhance the modularity and 
scalability of software systems. Maintenance activities become 
more granular, allowing teams to update and deploy individual 
components without disrupting the entire system. Software 
maintenance is the lifeline that sustains the vitality and relevance 

J Inform Tech Softw Eng, Vol.13 Iss.6 No:1000362 2


	Contents
	Detecting and Optimizing the App Testing Techniques and their Complexities with Software Maintenance
	DESCRIPTION




