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ABSTRACT
Unfriendly environments like drought, cold or any other properties stress lead to a certain reduction of crop yield

and quality. Abscisic acid (ABA), as an important plant hormone, plays a very important role in plant growth and

resisting plant stress responses. The discovery of ABA crystal structure is a very critical event and provide a very

important role for ABA signaling pathways to be exposed to us more clearly. In this process, the screening of ABA

receptor agonists played a decisive role in the analysis of ABA crystal structure. Further, various ABA receptor

agonists have been screened out, and their functions have also been analyzed. Together, structures studies suggest a

detailed mechanism for ABA and receptor binding and regulation of downstream ABA signal pathway, which provide

a thought for improve crop yield and quality through the rational utilize the designed ABA agonists.
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INTRODUCTION
Crop tolerance and quality improvement are regulated by plant
hormones and growth regulators, which is an eternal theme in
agriculture [1], [2]. Any single strategy, such as appropriate
moisture, sufficient light, and included a method of genome
editing (GE) to remove or add a gene, has limited improvement
in crop traits. In addition to the current global environment,
fresh water supplies are alarmingly decreasing and drought,
salinity, cold, and other abiotic stresses are responsible for major
crop harvest losses world-wide [3], [4], [5]. Therefore, an effective
improvement of crop yield is bound to be an interdisciplinary
technology combine with geography, physiology, genetics and
other aspects about plants and environment.

ABA is plant hormone that plays crucial roles in seed
maturation and germination, stomatal closure, and osmotic
stress-responsive gene expression and in developmental
processes. Stresses, such as drought, salinity, cold and pathogen,
induce strong expression of ABA biosynthetic genes, and lead to
a high ABA levels in plants [6], [7], [8]. The upregulated ABA
levels regulate plants adapt to the adverse conditions through

ABA-regulated signal way, especially ABA-dependent gene 
expression, including the ABA receptors, protein phosphatases 
type-2C(PP2Cs), Snf1-related kinase 2s(SnRK2s), and 
AREB/ABF regulon [9], [10], [11], [12]. ABA receptor agonists 
based on mimics of the phytohormone ABA, which have given a 
characteristic of potent water savings and drought protection 
activity for increasing yield [13], [14], [15]. Therefore, according 
to its function in plants physiology, the control of ABA agonists 
regulated signal way has the potential to be a new tool for 
studying functions and improving plant agronomic traits and 
stress resistance.

ABA-REGULATED SIGNAL WAY

ABA, identified in plants in the 1960s, is an important plant 
endogenous hormone with a sesquiterpene structure [8], [16],
[17]. A series of studies showed ABA plays a critical role in many 
vital physiology processes, including seed dormancy, seedling 
growth, leaf senescence ， control of vegetative growth and 
regulating plant responses to environmental stresses such as 
drought, cold, extreme heat, salinity, waterlogging, anoxia,
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ammonium poisoning, pathogen infection and the parasitism of
other plants [18], [19], [20]. Further, studies revealed that the
pyrabactin resistance1/PYR1-like/regulatory components of
ABA receptor (PYR1/PYL/RCAR) proteins, the most widely
recognized ABA receptor family among various types of ABA
receptors, has emerged as ABA sensors able to inhibit the
activity of specific protein phosphatases type-2C (PP2Cs) in
responses to ABA, and then activating the sucrose non-
fermenting 1-related protein kinase (SnRK) subfamily 2
(SnRK2s) [21], [22]. The PP2Cs ABI1 and its close structural
homolog ABI2, emerged as a hub in the network of ABA signal
transduction [23], [24], [25].

In ABA signal pathway, ABA binds in the PYR/ PYL ABA
receptors cavity, a conformational change enables the receptors
to bind to PP2C active sites [26], [27]. Thus, the structural data
show a structure of PYLs-ABA-PP2C, the core complex in ABA
signal pathway [28], [29]. Further, the physiological substrate of
PP2C, SnRK2 peptide show the accumulation of activated
kinases, which phosphorylate downstream effectors to initiate
protective responses such as stomatal closure and gene
expression reprogramming [30]. In this process, amplifying the
receptor of ABA signals can better improve water use and
photosynthesis efficiency in crop plants.

ABA RECEPTOR CRYSTAL STRUCTURES

Since the crystal structure of ABA receptor was resolved and
reported, various ABA receptors and related crystal structures
have been reported in a rapid explosion manner [28], [29], [31],
[32]. Recently studies show that more than 70 crystal structures
of PYLs family have been reported. In addition, Structural
studies mainly focus on structures of ABA-bound PYLs or PYLs-
ABA-PP2C, which provides more evidence for learning the ABA
signaling pathway [28], [29], [31], [32], [33]. PYR/PYL/RCAR
receptors belong to a branch of START/Bet v I proteins
superfamily, which share a common fold enclosing large
hydrophobic ligand binding pocket. This structure can bind a
chemically diverse set of lipids, hormones, and antibiotics [34].

The structure of ABA-bound PYLs comprises a large C-terminal
α-helix (α3) is enfolded by a seven-strand anti-parallel β-sheet
and two small α-helices, which is the basis for forming a large
open ABA binding pocket [28], [29], [31], [32]. This structure is
the basis of ABA combination, and it is also main evidence for
the transformation of pyrabactin.

ABA RECEPTOR AGONISTS

Pyrabactin is a synthetic sulfonamide that directly accelerates the
discovery of ABA receptor PYLs [35], [36]. Although its skeleton
is not similar to ABA, a similar interaction between ABA-PYL
was found in the binding mode of pyrabactin-PYL [26], [37].
This similar banding mode indicated that ABA receptor agonists
harbor the potential to improve the crop quality under stresses
by activating the ABA signal pathway [13]. Further, the
identification of ABA physiology, especially manipulate ABA
response on plant stress, which would represent a very useful
tool to design ABA receptor agonists [13].

Recent studies have reported a variety of ABA agonists (Figure
1), pyrabactin and its ramification [13], [38]. PYLs agonists
derived from this molecule generally require one end to be
hydrophilic and the other end to be lipophilic. The polar group
at one end of the molecule interacts with the polar residue
inside the ligand binding pocket, and the other hydrophobic
group interacts with the gate. Additionally, another sulfonamide
ABA agonist-AMI was screened out with the method of high-
throughput [15], [37], [39]. It has a special potential in
promoting the binding of receptors to downstream proteins. Its
inhibitory ability on the downstream protein HAB1 is 8.7 times
that of ABA and 7.6 times that of pyrabactin. At the same time,
it can selectively bind dimeric PYLs and successfully inhibit
downstream phosphatase HAB1. These findings raise the
possibility that physiological ABA agonists may exist to a new
tool to improve crop quality.

SUMMARY AND OUTLOOK
In this review, we focused on the structural analyses
understanding of the comprehensive ABA signaling network, in
which PYR/PYL/RCARs, group-A PP2Cs, and SnRK2s serve as
the core components. However, how to use ABA-regulated plant
stress resistance in actual production to increase crop yield
remain to be limited. Unexpected, some research groups
combined high-throughput screening, virtual screening, x-ray
crystallography, and structure-guided design to develop a series
of ABA agonists. Recently, a study of opabactin (OP), which is
an ABA mimic, showed that OP enhances drought tolerance
and hyperactivates ABA transcriptional responses. Further, the
ABA agonist inhibits the activity of HAB1 specifically through
dimeric PYR/PYL/RCARs. Based on these studies, promising
combinations of PYR/PYL/RCARs and ABA agonists, which
sought as next-generation agrochemicals that can manipulating
plant water use in crop growth and yield.

Figure 1: Representative ABA agonists.
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