
Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Shahbudin and Chua, J Inform Tech Softw Eng 2013, 3:3
DOI; 10.4172/2165-7866.1000122

Research Article Open Access

Design Patterns for Developing High Efficiency Mobile Application
Fadilah Ezlina Shahbudin and Fang-Fang Chua*

Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia

Abstract
With the advent of technology, mobile devices are becoming powerful and they are widely used as convenient

computing devices. In order to develop high quality application in a short period while overcoming the limitations and
challenges in mobile development, strong knowledge and understanding of the design purpose are the key factors in
developing well- designed applications. Good design ensures that crashes or harmful actions can be prevented as well
as increasing users’ satisfaction. By implementing design patterns, developers can cater wide variety of users whereby
they do not have to redevelop similar application for users who are using different types of devices. Application can
be developed in a short period as developer can reuse design patterns to develop new application in similar domain.
Our proposed work aims to implement design patterns to overcome limitations of current techniques and increase
efficiency, usability and reusability in mobile application development.

*Corresponding author: Fang-Fang Chua, Faculty of Computing and Informatics,
Multimedia University, Cyberjaya, Malaysia, Tel: +60-3-8312-5406; E-mail:
fang2x81@gmail.com

Received October 09, 2013; Accepted October 30, 2013; Published November
16, 2013

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High
Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122. doi:10.4172/2165-
7866.1000122

Copyright: © 2013 Shahbudin FE, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Keywords: Design patterns; Mobile application; Efficiency; Usability;
Development

Introduction
Mobile devices with sophisticated functionalities and applications

have changed people’s life. There are many organizations and individuals
leaning towards mobile application development. Understanding
of the design purpose plays important role in developing well-
designed application. Design choices affect the quality of application
and developers’ design decision will have a significant impact on the
applications. For example, the implementation of layout, graphics,
and animation will have performance implications. Defining the core
building blocks of application encourages reusability. Therefore, the
design and implementation of a set of components can be optimized.
Building the most appealing design is not the only goal in mobile
development as the application must not only attract users but also
to achieve balance in terms of functionality, aesthetics, usability and
performance. Good design not only eliminating users’ dissatisfaction,
but it can prevent crashes or harmful actions. Hence, developers need to
take into account different aspects when designing mobile application.
The design used in mobile application influences how the application
performs. Mobile applications need to be fast and reliable in order to
be valuable in the dynamic environment. However, limitations of the
medium impose significant challenges to design application that can
meet all of those expectations. As architectural design plays a key role
to overcome those constraints, there is a need for an improvement of
the design patterns applied in mobile application development.

In this paper, we aim to identify and analyze architectural or design
patterns for mobile application development, implement the design
patterns in mobile application, evaluate and verify the effectiveness. In
order to increase efficiency, usability and reusability, design patterns
for mobile application development are proposed and design patterns
are implemented in Android application. The paper is organized
as follows: Section 2 outlines the problem statements, and Section 3
gives an overview of Mobile Computing and Mobile Application
Development. Section 4 explains the Significance of Design Patterns
in Mobile Application Development followed by an Analysis and
Implementation of the proposed Design Patterns in Section 5. In
Section 6, we provide the evaluation of the implementation results.
Section 7 concludes the paper and we provide an outlook on future
work in Section 8.

Problem Statements
Developing mobile application is a challenging task as there are

many aspects and factors that need to be considered to achieve the
specified quality attributes. Problems identified as below are related
to mobile application development and these problems are the key
motivation for our proposed work.

Fast evolution of mobile devices

Mobile devices are evolving in a fast pace. Various types of mobile
devices are available in the market and they are differing in terms of
sizes, display resolutions, operating systems, processor speed, memory
size, and battery life. Hence, it is very difficult to design for different
devices in a short time to market. With the use of design patterns,
similar approach can be implemented to develop mobile application
in the same domain thus reducing the time, cost and effort needed to
develop well-designed application.

Mobile constraints

Mobile devices have limited computing capability and resources.
Hence, complex application which consume large amount of resources
could not run well on mobile devices. Developing mobile application
differs from developing desktop or web-based application. For example,
an application for Mac OS cannot be ported to iPhone. This is due to
the difference of computing and processing capability in the mobile
devices and desktop. However, similar application for the desktop
can be developed for mobile application using the right approach.
The use of design patterns has shown a significant impact in desktop
application. Thus the same approach can be used to develop mobile
application and improve the quality of mobile application.

Low efficiency application

In mobile application, efficiency can be categorized into time
efficiency (i.e. consumption time and network time) and resource

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 2 of 9

efficiency (i.e. memory consumption, battery consumption and CPU
consumption). Mobile application should respond and use resources
appropriately when performing its function. Low efficiency application
may cause problems when accessing the application such as slow
load time, crash, or froze. The use of design patterns can improve
the efficiency of mobile application by implementing heavy weight
functionality to be executed on the server and allowing the client
applications to invoke the functionality in the server.

Unstructured design

Unstructured design such as code duplication may result in the
increase of software size, difficulty to maintain, and poor design. This
might happen specifically when developing for interactive application
which requires multiple types of user interface. Developing such
application requires thorough consideration on the design factors as
it might result in complexity problem. Poorly-designed application
may consume more resources and slow down or block the device
usage. Besides, poor designs make testing and maintenance activities
becoming difficult.

Mobile Computing and Mobile Application
Development

Mobile computing systems can be defined as “computing
systems that may be easily moved physically and whose computing
capabilities may be used while they are being moved” [1]. Examples
include laptops, personal digital assistants (PDAs), and mobile
phones. Mobile computing has changed the way computers are used.
In fact, it is expected that many devices will become smaller and even
invisible in future. Technologies improvements in certain areas such
as in Central Processing Unit (CPU), Memory, Screen, Touch-screen
interface, battery, and wireless have driven the rapid advances in
mobile computing. Advances in hardware technology aligning with
the current trends in web-based computing has led to a reduction in
costs, thus increasing the availability of mobile computing paradigms.
While the concept of mobile computing is well established, the
research area and industry for Mobile Application Development has
gained a lot of attention. However, there are many challenges and
limitations that need to be considered as developing mobile application
differs from desktop or web-based application development. Many
mobile applications available today provide different services and
functionalities while previously, mobile apps were developed mainly
to support productivity (i.e. email, calendar and contact databases).
With the increasing demand and high user expectations, application
such as mobile games, context-aware and location-based services,
banking, and e-commerce have emerged. In fact, today mobile devices
are considered as computers first and phones second as described by
Hayes [2].

There are different approaches of mobile application development.
Hence, developers should know whether they want to deploy a native
application, web application or hybrid application as different platform

have different development requirements. Table 1 summarizes native
application development for iOS, Android, BlackBerry and Windows
Phone.

As we can see from Table 1, iOS, Android, BlackBerry and Windows
Phone have different requirements for their mobile application
development. Designing and developing mobile application is a
challenging task. While taking into account the constraints, the
application must achieve high level performance and usability. In order
to develop well-designed application and ensure that requirements
are met, developers need to consider different aspects in designing
mobile applications [3] suggested six design considerations for mobile
application which are:

1)	 Decide type of application (Native, Web, and Hybrid)

2)	 Determine type of device to be supported (Screen size,
resolution (DPI), CPU performance characteristics, memory
and storage space)

3)	 Consider limited-bandwidth scenarios (Hardware and software
protocols based on speed, power consumptions and not just on
ease of programming)

4)	 Design UI appropriately, take into account platform constraints
(Simple UI design and architecture, and keep other specific
design decisions in mind)

5)	 Design a layered architecture appropriate for mobile devices
(Apply layered architecture to maximize separation of
concerns, an improve reusability and maintainability)

6)	 Consider device resource constraints (i.e. battery life, memory
size, and processor speed)

While taking the above mentioned consideration as a guideline in
designing and developing mobile applications, developers must be able
to tackle the challenges in developing mobile application as mentioned
[4,5] . These challenges include:

•	 Wireless communication issues (availability and disconnection,
bandwidth variability i.e. low or high, heterogeneous networks,
and security risks)

•	 Mobility issues (address migration, location-dependent
information, migrating locality)

•	 Portability issues

•	 Various standards, protocols and network technologies

•	 Limited capabilities of terminal devices (factors pertaining to
low power, risks to data integrity, small sized user interfaces,
and low storage capacities)

•	 Special privacy and customizability needs

•	 Strict time-to-market requirements

iOS Android BlackBerry Windows Phone
Languages Obj-C, C, C++ Java (Some C, C++) Java C#, VB.NET, etc

Tools Xcode Android SDK BB Java Eclipse
Plug-In

Visual Studio,
Windows Phone
Dev Tools

Executable Files .app .apk .cod .xap

Application Stores Apple iTunes Android Market BlackBerry App
World

Windows Phone
Market

Table 1: Summary of Native Application Development.

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 3 of 9

Different types of mobile application have different specifications.
Our focus is to provide solution by identifying and analyzing design
patterns and implement them in a mobile application to further
improving the quality of mobile application in terms of efficiency,
usability, and reusability. Since they are wide variety of mobile
devices available in the market, we need to counteract the limitation
and challenges in designing and developing mobile application by
providing a solution to cater wide range of audience while keeping pace
with the evolving mobile technologies.

Significance of Design Patterns in Mobile Application
Development

Design Patterns have wide variety of usage and they have been
used and tested in practice. They are proven to be effective in software
development to simplify the overall application design. Design patterns
make the software more reusable which can lower the production
cost and reduce development time. Design patterns are very useful
for developers and designers as they encapsulate experience, provide
a common vocabulary, and enhance the documentation of software
designs [6]. There are wide varieties of mobile devices available in
the market with various sizes, display resolutions, operating systems,
processor speed, memory size, and battery life. Hence, developing
mobile application is a challenging task as developers need to take into
accounts the boundaries and challenges.

Patterns for UI design are also emerging as UI is one of the most
important aspects in designing mobile application. There is also
design patterns used to predict user behavior as context aware such
as Recommender application or location based services. Developers
and designers are looking for ways to adapt the design patterns in
mobile application development. Few researches have shown that some
patterns can be used for mobile platforms in a very similar way as in
classical architecture. In fact, some design patterns have been used in
platform such as Android and iOS. For example, in Android, the Media
Player Service class implements the Factory Method to create different
types of concrete media players, Activity class in Android development
uses the Template Method pattern, Intent uses the Command pattern
and Cursor, Adapter and the Observer pattern is used for View classes.
Android View and Widgets are implementations of Composite pattern.

Apart from that, Model View Controller (MVC) pattern was also
being extended in Android development. The MVC is combined with
Decorator pattern in Controller and the Strategy pattern in between the
Controller and the View. The Observer pattern is applied so that the
associated Views are notified when the Model changes without coupling
the Model and View. Furthermore, MVC is also combined with
Factory Method to create multiple Views and multiple Controllers. The
extended version of MVC is modified to support dynamic properties,
avoid complexities and improve flexibility. Since most devices come in
multiple screen sizes and display resolutions, these flexibility needs to
be adopted in mobile application development in order to enhance the
look and feel, and improve the usability of the application.

Design patterns have also been used as the fundamental design in
Cocoa development. Cocoa is an application environment for Mac OS
X operating system and iOS, the operating system for Multi-Touch
devices such as iPhone, iPad, and iPod touch. Command pattern is
used in Cocoa for undo management and distributed objects. The
purpose of the pattern is to make operations undoable. The pattern also
describes the target-action mechanism of Cocoa in which user-interface
control objects encapsulate the target and action of the messages they
send when users activate them [7]. In fact, most of the design patterns
used in Cocoa development (i.e. Abstract Factory, Adapter, Chain of
Responsibility, Decorator, Facade, Iterator, Observer, and Proxy) are
cataloged by Gamma et al [6].

Cocoa development also implements MVC patterns and it
is the most pervasive design pattern used in the design of several
technologies, including bindings, undoes management, scripting,
and the document architecture. The MVC version in Cocoa is a
combination of several patterns which includes Composite patterns
in the View objects, Strategy pattern between Controller objects and
View objects and Observer pattern in the Controller object. Table 2
shows different design patterns implementation used in various mobile
platforms [8] applied balanced MVC Architecture for Developing
Service-based Mobile Application by devising and adopting three
architectural principles; being thin client, being layered with MVC,
and being balanced between client side and server side. MVC were
extended whereby client and server system embody its own separate
layers. The authors present patterns of mobile application architectures
by adopting MVC and client server architectures which consider
efficiency as a quality attribute for designing mobile application. Time
efficiency and resource efficiency are the two key factors for well-
designed mobile application architecture. Biel et al [9] introduced five
patterns for development of mobile applications running on mobile
devices without accessing remote logic or data storage. The authors
focused on improving the usability of mobile application for Android
platform. Despite the fact that some design patterns have shown a
significant usage in mobile application development, there are also
design patterns that are not applicable for mobile application as they
cannot fit in the design scenario of mobile application. For example,
Singleton pattern is not applicable for light weight mobile application.

Analysis and Implementation of Proposed Design
Patterns
Analysis

In order to identify the design patterns, we follow Object-oriented
Analysis approach to study the existing design patterns to investigate
whether they can be reused or adapted for mobile application
development. Next, we analyzed them by following the guideline which
has been used by most of the developers and designers. The design
patterns format as shown in Table 3 is a template which describes the
characteristics of the design patterns. The proposed template follows
the template described by [6] with few modifications.

Table 2: Design Patterns used in various platforms.

Platform Design Patterns

iOS Abstract Factory, Adapter, Factory Method, Template Method, Chain of Responsibility, Command, Observer, Composite, Decorator, Facade,
Iterator, Mediator, Memento, Proxy, NSProxy, Receptionist, Singleton, Template Method, MVC

Android Patterns such as Factory Method, Template Method, Command, Observer, MVC
BlackBerry Patterns such as Factory Method, Template Method, Command, Observer, MVC
Windows Phone
7 MVC, Model View View-Model (MVVM), View-View Model Pairing, Model-View-Presenter (MVP)

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 4 of 9

The identified design patterns should be applicable for mobile
application based on three quality attributes which are:

1)	 Efficiency –The capability of the application to exhibit the
required performance with regards to the amount of resources
needed.

2)	 Usability –The usability properties that exhibit the ease of the
use of the application.

3)	 Reusability – The extent to which the design patterns could be
reused for new application within similar domain.

Due to limited resources and processing capability of mobile
devices, design pattern can be used to improve the efficiency of mobile
application by ensuring that the amount of resources and processes are
handled efficiently. As usability is also an important characteristic for
mobile application, we also need to implement design patterns so that
aspects such as screen size, resolution (DPI), and elements are handled
properly. Design patterns are useful for application which supports
different looks and feels (i.e. different appearances and behaviors for
UI elements like scroll bars, windows, and buttons).

The proposed idea separates the presentation and the application
code (i.e. Event handling, initialization and data model, etc) by
implementing design patterns such as Model View Controller (MVC)
which allow us to develop application with loose coupling and
separation of concern. Instantiating look-and-feel for specific classes
of elements throughout the application makes it hard to change the
look and feel later. This results in poor design and makes it difficult
to be tested and maintained. Hence, the idea of design pattern is to
make sure that the modules or objects are loosely coupled. Each
module only makes use of little or no knowledge of other modules,
so that changes can be made easily without affecting other modules.
The concept of separation of concern is to divide the modules into
distinct features with as little overlapping in functionality as possible.
With the limitation and challenges in designing and developing mobile
application, design patterns can be a reusable solution to developers
to develop new application in a short period as low coupling between
modules allows easy reuse of a module.

Our aim is to specify the design patterns which are relevant to
mobile application development and choose the most optimal design
patterns while taking into account the characteristics of target mobile
applications and the quality attributes that we want to achieve. In this
case, design patterns are identified and analyzed according to our
application requirement specification. We are proposing an Extended
MVC which combines Observer, Command, Composite, Mediator,
and Strategy design patterns in redesigning our Student Planner
Android Application.

Analysis of extended MVC

Pattern name: Extended MVC]

Intent: MVC pattern separate the business logic (model) and the
presentation (user interface) logic (view). It consists of 3 components
which are Model, View, and Controller. In extended MVC, Observer,
Command, Composite, Mediator, and Strategy are incorporated.]

Motivation: MVC is a pattern used to isolate the business logic
from the user interface. Model represents the information (the data)
of the application and the business rules used to manipulate the
data. View corresponds to elements of the user interface such as text,
checkbox items, and so on while Controller manages details involving
the communication between the model and view. The controller
handles user actions such as key press, tap, etc and pipes them into the
model or view as required. There could be more than one controller
and changes in future (i.e. to add new controller) can be easily made
without changing the view class because view is decoupled from the
model. Observer pattern allows decoupling of the display and the
application logic.

Applicability: Controller is used when there is a need to choose
from different controller or when a decision is to be made to select an
object from different objects implementing the same interface. When
we have several subjects and observers, the relations becomes more
complex due to many-to-many relationship which makes it difficult
to manage. The relation between subjects and observers can contain
some logic. Mediator pattern is introduced so that an observer only
notify when all subjects change their states. We introduce Change
Manager object which is responsible to maintain the many-to-many
relations between the subjects and their observers, encapsulate the
logic of notifying the observers, and receive the notifications from
subjects and delegate them to the observers. The Change Manager is a
type of observer. It receives notification of changes of the subject while
at the same time it is considered as the subject because it notifies the
observers.

Structure: Activity Life Cycle (Figure 1).

Participants: MVC Pattern consists of 3 components. However,
for extended MVC pattern as shown in Figure 1, the components
incorporate the other design patterns (i.e. Observer, Command,
Composite, Mediator, and Strategy patterns).

Collaborations: View and concrete controller class interact to
select the controller to be used to process the request. View registers
itself with Student Planner Model and request state information. When
Student Planner Model notifies view of the state changes, View update
itself to reflect the new state.

Implementation: The Model object incorporates observer pattern
to allow its listeners (i.e. view object) to get updates (i.e. changes in state)
from it through Controller object. Model implements the Observer
pattern to keep the interested objects updated when the state changes
occur. Observer pattern keeps the model completely independent of

Table 3: Design Patterns format.

Part Description
Pattern name Design pattern name
Intent The objectives or purposes of the pattern and the problem it solves
Motivation A concrete scenario that illustrates a design problem and how the pattern solves the problem.
Applicability Describe the situation in which patterns are applicable.
Structure Provide a graphical representation of the classes in the pattern using object notation such as UML
Participants Indicate the classes and objects that participate in the pattern
Collaborations Indicate the collaboration of participants
Implementation State guidance on the implementation of the pattern

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 5 of 9

the views and the controllers, and allows the use of different views
with the same model, or multiple views at once. View is responsible
for presenting the data and the state obtains from the model, to the
user. View represents the output of the application. The View object
incorporates Command and Composite pattern. The Composite
pattern can be applied to the view giving it a hierarchical structure.
The visual output of the application can be decomposed which form a
hierarchy. The view objects are a composite of nested views that work
together.

Controller is responsible to interact with the model to perform
user’s requests. Views invoke the appropriate controller, which acts
on the model. It takes user input provided by the view, and converts
to operations. The controller receives and translates the input, then
requests on the model or view. Controller is responsible for calling
methods on the model that change the state of the model. Controller
object incorporates Mediator pattern and Strategy pattern. Mediator
pattern mediates the flow of data between model and view objects in
both directions. Changes in model state are communicated to view
objects through the controller objects. Strategy pattern is implemented
by Controller for one or more view objects to keep the view decoupled
from the model. The view does not know how the operation is
performed. The view object maintains visual representation, and
delegates decisions about the application-specific of the interface
behavior to the Controller. ApplicationController interface control
the actions according to user’s action such as entering data, saving
data, canceling actions, etc. The concrete controller class implements
Application Controller interface.

Implementation

The first step in development is to redesign Student Planner
application into a new application which implements Extended MVC
design Patterns. Our aim is to verify that the proposed Extended MVC
increases efficiency, usability and reusability of mobile application. In
addition, we also want to verify that proposed techniques could speed
up the development process of mobile application (i.e. prevent issues
that can cause major problems in development, reduce or remove
duplication and improve code readability) and increase productivity
of mobile application.

Overview of student planner application: Student Planner
Application allows students to keep their university or college life
organized. Students can track activities such as making appointments,
completing assignments, attending quizzes/exams, and others.
Students will be notified of any events (i.e. Tasks and schedule events).
In addition, the application make use of Proximity Alert which
allow users to be notified whenever they have tasks to be done near
a predefined location. Student Planner also includes Speech to Text
functionality whereby user can add new task easily without typing
multiline subject. Conclusively, Student Planner Application consists of
three components which are Activity, Service, and Broadcast Receiver.

Activity: An activity presents visual user interface from which
a number of actions could be performed. It is independent of the
others. Student Planner dashboard is marked as the first interface to be
presented to the user when the application is launched. Intents are used
to move from current activity to another. Figure 2 shows the activity
life cycle of Student Planner Application.

A service: A service runs in the background for an indefinite period
of time. Communication with the service is through an interface that the
service exposes. Student Planner application implement Intent Service.
The Intent Service is a base class for Service that handles requests on
demand and terminates itself automatically. The Intent Service class
uses the on Handle Intent method which is asynchronously called by the
Android system. Student Planner makes use of Alarm Manager which
provides access to the system alarm services. It allows scheduling of
the application to be run at some point in the future. When alarm goes
off, the Intent that had been registered is broadcasted by the system,
and automatically starts the application if it is not already running. In
Student Planner application, the scheduled alarm will start the service
Schedule Reminder Service, Task Reminder Service, and Location Task
Reminder Service. Student Planner also makes use of Location Service
to find out the device’s current location and request for periodic update
of the device location information. The application registers an intent
receiver for proximity alerts so that when the device is entering and
existing from a given longitude, latitude and radius, the user will be
notified. Location Manager, Location Provider and Location Lister
classes in the Location API package are used to retrieve the location
information of the user. Figure 3 shows the flow of Service.

Figure 1: Extended MVC Structure.

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 6 of 9

A broadcast receiver: A broadcast receiver receives and reacts
to broadcast announcements. Broadcast receivers start an activity
in response to the information they receive, or as services. Student
Planner makes use of broadcast receiver to fire notification to users
by using notification manager. The flow diagram Figure 4 shows the
flow of Broadcast Receiver used in Student Planner application to fire
notification to user.

Evaluation
Evaluation criteria

By considering mobile devices characteristics such as sizes, display

resolutions, operating systems, processor speed, memory size, and
battery life, we define three verification criteria which are efficiency,
usability and reusability. Efficiency is the capability of the application to
exhibit required performance with regards to the amount of resources
needed. Since the application make use of Location based service
which requires GPS functionally to alert the user when they are near
to certain location, it is important that the service is handled correctly
and does not consume the battery life. Usability is the properties that
exhibit the ease of the use of the application. As we aim to cater as
many Android devices with different specifications as possible, we
have to ensure that the application support those devices and behave
as intended. User should be able to use the same features and perform
the same operations regardless of devices they use. Reusability is the
extent to which the design patterns could be reused for new application
within similar domain. Since it is hard to test whether the application
is reusable for other applications; our aim is to prove that the proposed
design pattern is indeed reusable in mobile application development.
Application which makes use of similar elements such as text view,
edit text, scrolling, button, list view, radio button, etc should be able to
utilize our proposed design patterns.

Evaluation methods

Evaluation and verification is the process of evaluating the mobile
application in order to determine whether the implementation of the
design patterns satisfies the requirements that we have specified in
the earlier stage. In order to achieve the above criteria, we conducted
Performance Analysis and Automated Testing. We conducted
Performance Analysis Test which covers aspects such as CPU time

Figure 2: Activity Life Cycle.

Figure 3: Service Flow Diagram.

Figure 4: Broadcast Receiver Flow Diagram.

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 7 of 9

and object allocation. Several Performance Analysis tools were used to
check performance problems such as garbage collection and memory
leak when executing the application. Basically three types of analysis
were performed which are heap usage examination, memory allocation
tracking, and heap dump analysis. The heap usage examination was
performed in Eclipse using Dalvik Debug Monitor Server (DDMS)
for both version of application (i.e. normal application and MVC
application). DDMS displays how much heap memory a process is
using. This information is useful in tracking heap usage at a certain
point of time during the execution of application. DDMS shows some
basic statistics of the application heap memory usage which is updated
after every Garbage Collector (GC). We also tracked the memory
allocation of objects to track objects that are being allocated to memory
and to identify which classes and threads are allocating the objects using
DDMS. The purpose is to track the location of objects which are being
allocated when certain actions are performed using the application in
real time. This information is valuable to assess the memory usage that
can affect the application performance. We created a heap dump for
each application to track the problems (i.e. memory leak problem). The
test was done using Memory Analyzer (MAT). MAT is a heap dump
analyzer which immediately shows the biggest objects, categorizes
objects by class loaders and adds application knowledge in a typical
heap dump. In order to create a heap dump, we created HPROF file.
The conversion is done using plug-in version of MAT (version 1.2)
in Eclipse. Both applications were tested using Automated Testing
Solution called Test droid Cloud. It is a cloud-based service, which
allows developer to execute Android tests on various real devices from
different manufacturers, with different Hardware platforms, OS version
and screen resolutions hosted by the company. Testdroid provides
screenshots, logs, exceptions, CPU, and memory consumption profiles
of test execution. Every test run starts with rebooting the device, so that
the tests are executed on clean devices, with no interfering processes
running. Application and test package are then installed on the devices
and tests are executed. Screen shots are taken during test execution to
validate layout issues, or translation issues. We used Testdroid App
Crawler which is an intelligent tool for checking applications device
compatibility. We uploaded Student Planner application to Testroid
server. After that, Testroid install the application on all recommended
phones, crawl through all screens of the application and take a
screenshot of each view. The application was analyzed and feedback on
how the application works on various Android devices was gathered.

Test results

The results of testing are described in this section. The bar chart
Figure 5 shows the number of passed and failed tests for each of the
devices used in the testing.

The tests were performed on ten different devices with different
specifications such as screen resolutions, Android version, internal
storage, CPU, manufacturer, and RAM. All the tests passed for both
version of Student Planner application which indicates that both
versions are compatible with different Android devices used in testing.

Table 4 lists the result of test cases generated for each device with
test case execution time.

As stated in Table 4, Student Planner using Extended MVC gives
better execution time compared to normal Student Planner application.
Table 5 shows quick summary of testing. From the table, we can see
that both version of Student Planner Application are compatible with
all devices used during testing. However, the average completion time

of Student Planner using Extended MVC is faster than the normal
Student Planner application.

Table 6 shows Compared to average results. For Student Planner
Application, the slowest completion time is 91s while for Student
Planner Extended MVC is 80.3s. In addition, the result shows 10%
better full compatibility on Student Planner using Extended MVC
compared to 0% on normal Student Planner application. Results also
show that, the fastest installation time is 8s which is on Student Planner
using Extended MVC.

Table 7 shows the timeline divided into main tasks of the test
process for every single device used in testing for Student Planner

Figure 5: Test results by device.

Table 4: Test Case for Each Device with Test Case Execution Time.

Device Student
Planner

Student Planner
Extended MVC

HTC Desire OS version: 2.2.2 8 313.67s 305.2s
HTC EVO Shift 4G OS version: 2.3.4 10 314.07s 308.16s
HTC Sensation XL OS version: 4.0.3 15 313.61s 305.12s
HTC Wildfire OS version: 2.2.1 8 339.26s 318.1s
LG Optimus One OS version: 2.2 8 340.47s 321.5s
Motorola Defy+ OS version: 2.3.6 10 314.31s 306.15s
Samsung Galaxy Nexus 4.2 OS version: 4.2.1
17 313.52s 305.6s

Samsung I9100 Galaxy S 2 OS version: 2.3.3
10 315.31s 310.12s

Samsung P7510 Galaxy Tab 10.1 OS version:
4.0.4 15 313.40s 305.55s

Samsung S5830 Galaxy Ace OS version:
2.3.3 10 356.63s 335.15s

Table 5: Quick Summary.

Student Planner Student Planner Extended MVC
Device tested 10 10
Avg. completion time 323.425s 312.065
Installation compatibility 100% 100%
Full compatibility 100% 100%
Screenshots taken 602 602

Student Planner Student Planner
Extended MVC

Slower completion time 91s 80.3s
Worse installation compatibility 1% 0%
Better full compatibility 0% 10%
Faster installation time 10.7s 8s

Table 6: Compared to average results.

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 8 of 9

Application and Student Planner using Extended MVC Application. As
we can see from Table 7, from the beginning of the test process which
is cleaning device until uninstalling the application, Student Planner
using Extended MVC shows better results compared to normal Student
Planner application. This shows that, the design patterns improved the
efficiency of the application. The structure or design of application
impacts the overall performance of the application because the design
used in mobile application influenced how the application performs.

Conclusion
Design patterns have shown greater impact in classical software

development. Since design patterns provide proven solutions, we
believe that it can be implemented in mobile application to overcome
the limitations and challenges in mobile application development.
There are various considerations that need to be taken into account
when developing mobile applications. This includes the type of
application, supported devices, user interface design and device
characteristics (i.e. battery life, memory size, and processor speed).
With the advent of mobile computing, developers have to consider
developing applications which can cater different specifications.
However, developing mobile application can be a tedious process as
each application have to go through the development cycles in order to
ensure the application conform to standard quality attributes.

We have identified and analyzed design patterns for mobile
application development, implement the design patterns in mobile
application, evaluate and verify the effectiveness. We have proposed
extended MVC design patterns and implement the design pattern in
Student Planner application in Android. We catered different version
of Android (i.e. 2.2 to 4.1) by developing the application in backward
compatibility. In addition, we took into account different characteristics
of mobile devices such as screen sizes, and orientations. Since most
devices come in multiple screen sizes and display resolutions, Extended
MVC can be used to support dynamic properties and improve
flexibility of application. Thus, enhance the look and feel and improve
the usability of the application.

While implementing Extended MVC design patterns, we verify
the application in terms of efficiency, usability, and reusability. Results

show that the efficiency of mobile application is greatly improved.
Since mobile devices has limited resources and processing capability,
the implementation of design pattern has improved the efficiency of
mobile application compared to normal application. The Extended
MVC reduces code duplication and improves the application design in
terms of code readability. In addition, testing shows that the application
is compatible with various devices and aspects such as such screen size,
resolution (DPI), and elements are handled properly. Extended MVC
is used to separate the presentation and the application code (i.e. Event
handling, initialization and data model, etc). This allowed us to develop
application with loose coupling and separation of concern. Each
module only makes use of little or no knowledge of other modules.
Therefore, adding and removing features can be made easily without
affecting other modules. Low coupling between modules also allows
easy reuse of a module. The resulting Extended MVC design pattern
can be used as a basis to develop similar application which requires the
use of internal storage and similar elements such as list view, edit text,
text view, buttons, scrolling, action bars, etc.

Future Work
Further studies may include identifying other design patterns

which can be integrated with the proposed design patterns or finding
other design patterns which can yield better result in designing mobile
application. In addition, future research works include investigating
how to implement the design pattern for application which requires
excessive use of network connections or implementing the design
pattern on client and server side.

References
1.	 B’Far R (2005) Mobile Computing Principles: Designing and Developing Mobile

Applications with UML And XML. Cambridge University Press, UK.

2.	 Saylor M (2012) The Mobile Wave: How Mobile Intelligence Will Change
Everything. Vanguard press, USA.

3.	 David H (2012) Microsoft Application Architecture Guide.

4.	 Forman GH, Zahorjan J (1994) The Challenges of Mobile Computing. Computer
27: 38–47.

5.	 Hayes IS (2002) Just Enough Wireless Computing. Prentice Hall Professional,
USA.

Table 7: Student Planner and Student Planner Extended MVC Performance Statistics.

Device and Android Version Cleaning device for testing Rebooting device Installing application Launching application Running Tests Uninstalling
application

SP SPE SP SPE SP SPE SP SPE SP SPE SP SPE
HTC Desire
OS version: 2.2.2 8 3s 2s 1m 33s 1m

3s 2s 2s N/A N/A 5m 15s 5m 10s 4s 3s

HTC EVO Shift 4G
OS version: 2.3.4 10 3s 2s 1m 20s 1m 20s 3s 3s N/A N/A 5m 16s 5m 12s 2s 2s

HTC Sensation XL
OS version: 4.0.3 15 6s 2s 1m 33s 1m 31s 3s 3s N/A N/A 5m 14s 5m 14s 2s 2s

HTC Wildfire
OS version: 2.2.1 8 8s 5s 2m 26s 2m 26s 11s 10s 3s 1s 5m 42s 5m 42s 10s 8s

LG Optimus One
OS version: 2.2 8 3s 3s 1m 23s 1m 23s 4s 4s N/A N/A 5m 15s 5m 13s 2s 1s

Motorola Defy+
OS version: 2.3.6 10 5s 4s 1m 28s 1m 23s 3s 3s N/A N/A 5m 42s 5m 15s 1s 1s

Samsung Galaxy Nexus 4.2
OS version: 4.2.1 17 4s 3s 68s 43s 2s 2s N/A N/A 5m 15s 5m 10s 1s N/A

Samsung I9100 Galaxy S 2
OS version: 2.3.3 10 1s 1s 54s 49s 6s 5s N/A N/A 5m 16s 5m 13s N/A N/A

Samsung P7510 Galaxy Tab 10.1
OS version: 4.0.4 15 1s 1s N/A N/A 2s 1s N/A N/A 5m 16s 5m 12s 1s N/A

Samsung S5830 Galaxy Ace
OS version: 2.3.3 10 2s 2s 1m 20s 1m 18s 5s 4s N/A N/A 5m 57s 5m 42s 1s 1s

http://www.novacsit.com/uploads/6/0/6/7/6067084/mobile_computing_principles_by_reza_far.pdf
http://www.novacsit.com/uploads/6/0/6/7/6067084/mobile_computing_principles_by_reza_far.pdf
http://www.amazon.com/The-Mobile-Wave-Intelligence-Everything/dp/B00CNL2C5A
http://www.amazon.com/The-Mobile-Wave-Intelligence-Everything/dp/B00CNL2C5A
http://msdn.microsoft.com/en-us/library/ff650706.aspx
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fchallengesofmobilecomputing.htm
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fchallengesofmobilecomputing.htm
http://www.amazon.com/Just-Enough-Wireless-Computing-Series/dp/0130994618
http://www.amazon.com/Just-Enough-Wireless-Computing-Series/dp/0130994618

Volume 3 • Issue 3 • 1000122J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shahbudin FE, Chua FF (2013) Design Patterns for Developing High Efficiency Mobile Application. J Inform Tech Softw Eng 3: 122.
doi:10.4172/2165-7866.1000122

Page 9 of 9

6. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, USA.

7. Apple Inc (2012) Cocoa Fundamentals Guide: Cocoa Design Patterns.

8.	 La HJ, Kim SD (2010) Balanced MVC Architecture for Developing Service-
Based Mobile Applications. 2010 IEEE 7th International Conference on
e-Business Engineering (ICEBE) 292-299.

9. Biel B, Gruhn V (2010) Usability-improving mobile application development
patterns. Proceedings of the 15th European Conference on Pattern Languages
of Programs. EuroPLoP 11: 1-5.

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://developer.apple.com/legacy/library/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html#//apple_ref/doc/uid/TP40002974-CH3-SW16
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5704330
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5704330
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5704330
http://dl.acm.org/citation.cfm?id=2328909&picked=prox
http://dl.acm.org/citation.cfm?id=2328909&picked=prox
http://dl.acm.org/citation.cfm?id=2328909&picked=prox

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Problem Statements
	Fast evolution of mobile devices
	Mobile constraints
	Low efficiency application
	Unstructured design

	Mobile Computing and Mobile Application Development
	Significance of Design Patterns in Mobile Application Development
	Analysis and Implementation of Proposed Design Patterns
	Analysis
	Analysis of extended MVC
	Implementation

	Evaluation
	Evaluation criteria
	Evaluation methods
	Test results

	Conclusion
	Future Work
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	References

