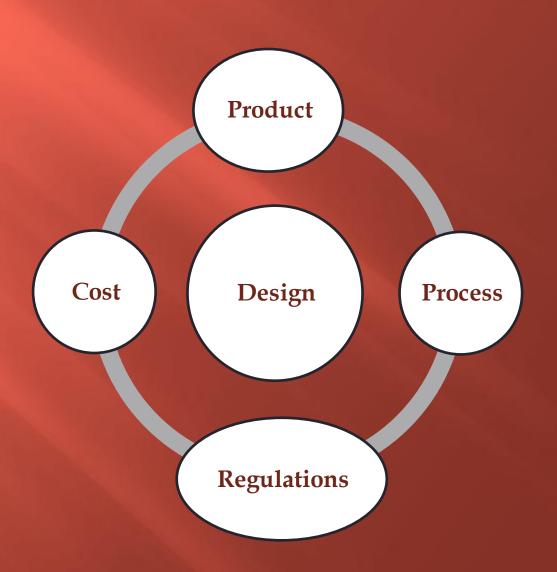
PPT Presentation Open Access

DESIGN OF MODERN PHARMACEUTICAL FACILITIES (OSD)



CONCEPTS & REGULATORY PHILOSOPHY:

- Comply with cGmps and concerned authorities requirements.
- Design should be based on detailed consideration of product and process.
- Flexible space with a capability of expansion.
- Cost effective construction with economic maintenance and energy.

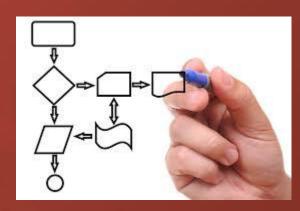
DESIGN ELEMENTS

Product consideration

- Deep analysis of the product characteristics.
- □ Product forecast.
- **□** Evaluate Facility flexibility:
 - single/multiple dedicated/multiple for use.
- Risk assessment and impact on design (ICH Q9)

1-PRODUCT CHARACTERISTICS (RISK)	DESIGN IMPACT (RISK CONTROL)
1- Light sensitive	-Closed process and special lighting system.
2- Hygroscopic	- Low humidity conditions is required especially during exposure of product.
3-Staining materials	Dedicated equipment.Cleaning systems (CIP).
4- Toxicity	Handling precautions.DedicationHVAC requirements.
5- Flammable ingredients	- Separate store and explosion proof arrangements.

2- CAPACITY & RATIONALIZATION	IMPACT ON DESIGN
1- Product forecast.	 Capacity and technology of equipment. Staging and storage area.
2- Product volume compared to total site forecast.	 Equipment specs. Dedication (Equipment or area) in case of special conditions required and high % of forecast (e.g. Low RH%).
3-Estimation of quantities of starting and packaging materials.	 Storage area (No. of pellets and degree of store technology). Size of sampling and weighing area.


CONCULSION:

Based on analysis of products and forecast we can evaluate:

- > Special operating and storage requirements.
- > Required dedication of equipment or area.
- Degree of technology and capacity of equipments required.

PROCESS CONSIDERATION

PROCESS MAP:

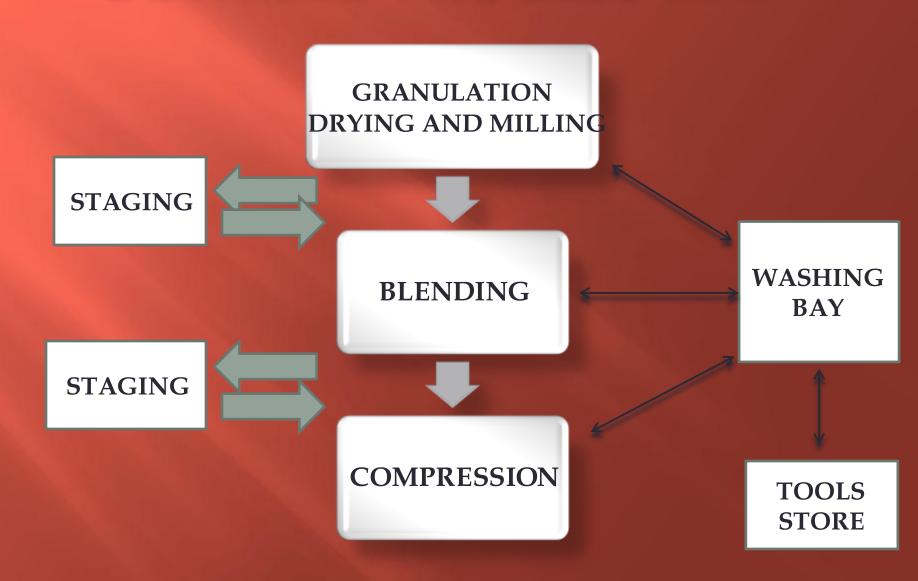
Shows a simple sequence of process steps.

FUNCTIONAL PROCESS MAP:

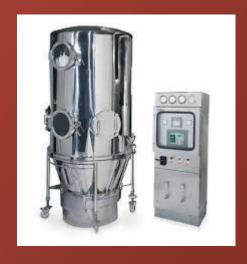
Detailed map includes the process, its organization as well as inter-relationships within the production.

SIMPLE PROCESS MAP

GRANULATION DRYING AND MILLING



BLENDING



COMPRESSION

DETAILED PROCESS MAP

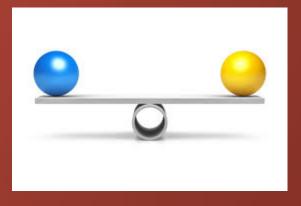
EQUIPMENT LAYOUT

- Defines precise room sizes and access routes.
- Blocks of rooms are assembled based on necessary adjacencies and process requirements

LEAN CONCEPTS

- · Aim:
- Increase the utilization ratio of the equipments.
- reduce waste of human resources and equipment resources.
- Simulation Elements of the System:
- Arrival of the material, the leaving of the material, waiting times, status of machines, overall machine process time....
- Simulation results of the different layout schemes verify the rationality and superiority of the final lean facility layout

LEAN CONCEPTS



- > Minimize the waiting time of a machining task.
 - (Rationale of blender and@oating machines capacity)
- Point out the bottleneck procedure and bottleneck equipment.
 - (No. and capacity of blistering machines)
- Reduce the transfer distance of the work pieces.
 - (Sequential and logical flow)

CONCLUSION

- Critical parameters and operating conditions are specified to control risks (e.g. cross contamination and mix up).
- List of equipment per each area and supporting services is prepared.
- Warehouse areas for format and spare parts.
- Quality of walls, ceilings and floors.
- Ventilation technology (recirculating air, fresh air, laminar flow).
- Type and quality of utilities (Water, compressed air, nitrogen, steam)

COST CONSIDERATION

- Classify areas according to level of protection required.
 - e.g. store area vs. production area
- · Optimum utilization of available facilities and technology degree.
- Current cost vs. life cycle cost.

Example: Cost of closed processing operations.

Closed processing	Equipment	HVAC	Other utilities	Area cleaning		
	↑	\	\	\		

REGULATORY CONCEPTS

- EU, FDA, PIC/S, WHO Regulations.
- Local authority requirements.
- Environment and occupational health and safety requirements.

FACILITY DESIGN

I- FACILITY LOCATION

- Surrounding area and airborne particles.
- Ease of transport and distribution
- Climatic factors.
- Availability of energy sources.
- Available land space.

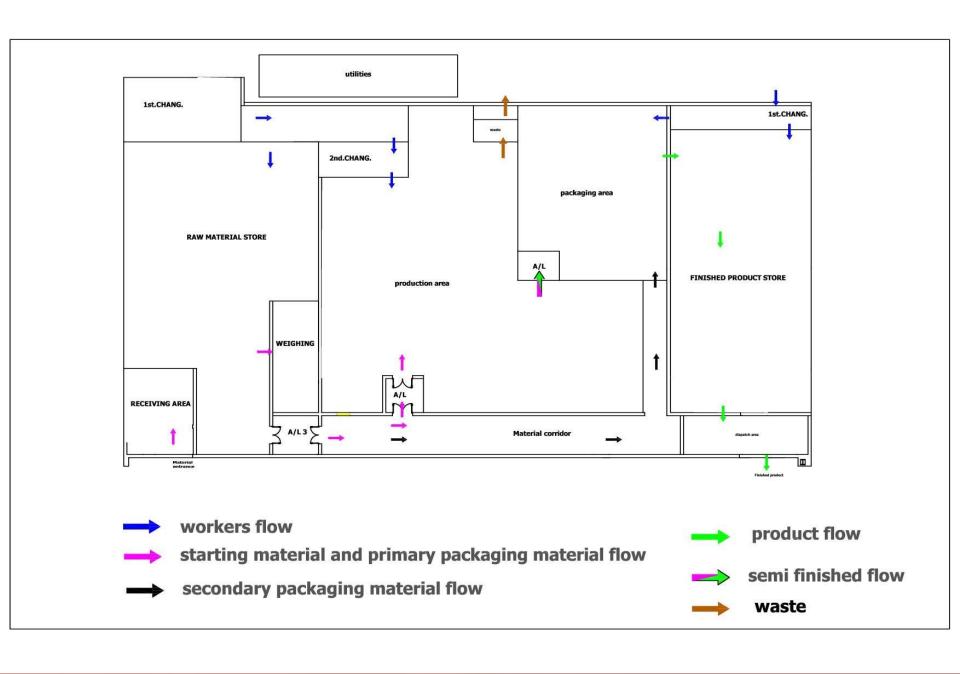
2- FACILITY COMPONENTS

WAREHOUSE

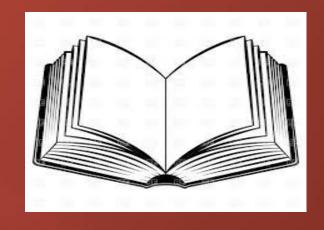
PROCESSING

PACKAGING

QUALITY AREA


UTILITIES AND SERVICES

3- FACILITY LAYOUT



Facility layout must be an integrated design that satisfies the following:

- > Equipment layout requirements
- Maintenance access requirements
- Personnel flow
- > Material flow
- Waste flow

4-ROOM BOOK

- Useful document in which all data relevant to the room can be compiled.
- Together with the layout, the room book presents the specification of a room.
- Basis of qualification.

4- ROOM BOOK

Room name	Code	Length	Width	Height	Area	Volume	Temp	RH%	Class	Light Load	PowerLoad KW	Steam	Load air volume	No of air change	Compressed air	No. of persons
Blending																
Compression																

UTILITIES

- URS
- Risk assessment
- Functional specification
- Control strategy
- Detailed drawing

COMMON MISTAKES

1-Insufficient capacity of warehouse

- Specify inventory level (Company policy).
- Quarantine time.
- Production extension.

2-Under sizing of area

- Space for movement and equipment access.
- Extra space for portable items brought into the room, such as material container.
- Space for mechanical and electrical equipment panels.

COMMON MISTAKES

3-Insufficient staging area

- Take in consideration production plan (No. of shifts, machine capacity, campaign size...).
- Waiting time for analysis.

4-No space for Future extension

5-No tool store

COMMON MISTAKES

6- Under capacity of AHUs

- Thermal load calculation (No. of persons, machines, lighting...).
- Duct connections (air flow).
- Actual capacity of AHU motors.
- Dehumidifier capacity (different seasons).

Thank You

Presented by:

Ahmed Salah Abu shoukka Technical director of Copad Pharma