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Introduction
In situations where protein X-ray structure or related structures 

for template-based homology modeling are unavailable for structure-
based virtual screening, computational methods for drug design rely 
principally on ligand-based approaches. Ligand-based approach 
depends on at least one known active compound; which serves as the 
query for searching library of compounds using predefined molecular 
descriptor parameters [1,2]. Three categories of chemical descriptors 
have been characterized till date; physical properties descriptors 
(1D-descriptor), molecular topology and pharmacophore descriptors 
(2D-descriptors) and geometrical descriptors (3D-descriptors, often 
requires prior knowledge of target protein binding-pocket) [3-5]. 
When there are multiple bioactive compounds for a given target, 
quantitative structure activity relationships (QSARs) method is more 
beneficial. QSAR method provides predictive mathematical model for 
biological activities using statistical clustering of multiple descriptors 
variables [6,7]. We sought to derive a mathematical equation from 
minimal set of ligand descriptors for set of Lysophosphatidic acid 
receptor (LPA1) inhibitors. With this equation, we hope to accurately 
predict the activity of a test set and hopefully used in ligand-based 
virtual screening for new high-affinity LPA1 antagonists.

Materials and Methods
Here, using Molecular Operating Environment (MOE) [8], multiple 

descriptors (SlogP (SlogP_VSA0-6), SMR (SMR_VSA0-4), a_acc, ASA, 
E_stb, a_hyd, and Kier (Kier1-2, KierA1-2)) [8] have been generated 
for training set of compounds (CHEMBL3819) in order to establish a 
mathematical equation to model LPA1 inhibition (antagonism). PCA 
analysis was also conducted to determine the principle components of 
the equation using scientific vector language (SVL) programming built 
into the MOE.

Results and Discussion
First, The IC-50 values of 134 unique entries (LPA1 inhibitors) 

from ChemBL database (CHEMBL3819) were converted to Gibb’s free 
energy of binding using Cheng-Prusoff equation [9] {Equation1} at 
S<<<Km {Equation 2} approximation at 298K.

50
[ ]1

=
+

i

m

ICK S
K

  (Equation 1)

*Corresponding author: Omotuyi IO, Department of Molecular Pharmacology
and Neurosciences, Nagasaki University Graduate School of Biomedical Sciences, 
852-8521, Nagasaki, Japan, E-mail: bbis11r104@cc.nagasaki-u.ac.jp

Received May 31, 2013; Accepted July 26, 2013; Published July 29, 2013

Citation: Omotuyi O, Ueda H (2013) Descriptor-based Fitting of Structurally 
Diverse LPA1 Inhibitors into a Single predictive Mathematical Model. J Phys Chem 
Biophys 3: 121. doi:10.4172/2161-0398.1000121

Copyright: © 2013 Omotuyi O, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Descriptor-based Fitting of Structurally Diverse LPA1 Inhibitors into a 
Single predictive Mathematical Model
OlaposiIdowu Omotuyi* and Hiroshi Ueda

Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 852-8521, Nagasaki, Japan

10(ln ) 2.303 (log )°∆ = − =−r i iG RT K RT K (Equation 2)

The library was randomly and unbiasedly grouped OCHEM 
server [10] into the training (120 compounds, Supplementary Figure 
1) and test (14 compounds) sets. The training set was initially fitted
using partial least square (PLS) method into all Chemical descriptors
implemented in MOE [8]. The descriptors were pruned in order of
their relative importance until a mathematical model (Equation 3) was
obtained.

dGExpt = -3.0345  -0.39537 x a_acc   -0.02183 x ASA  -0.36027 
x a_hyd  -0.01028 x  E_stb  +0.64979  x  Kier1    +0.21026  x  Kier2    
+0.08358  x  KierA1 -0.47849  x  KierA2  +0.03617 x SlogP_VSA0
+0.01945 x SlogP_ VSA1 +0.00494 x SlogP_VSA2   -0.00339  x  SlogP_
VSA3  +0.01846  x  SlogP_VSA4  +0.05076  x  SlogP_VSA6  -0.06603
x  SMR_VSA0  -0.05469  x  SMR_VSA1  -0.03451  x  SMR_VSA2
+0.00294  x  SMR_VSA3  -0.01021 x SMR_VSA4                    (Equation 3)

This model gives a high probabilistic (r2=0.79168 with RMSE of
0.61459 dGexpt) Gibb’s free energy prediction using minimal set of 
descriptors (Figure 1). A cross-validated correlation coefficient value 
of 0.70939 (RMSE = 0.72938) was also obtained for the model.

These results suggest that the set of descriptors chosen can 
effectively cluster the minimal structural and molecular parameters 
required for the predicting relatively small differences in the ligand 
activity of structurally diverse compounds typifying the training set.

Due to the relatively good mathematical correlation between the 
descriptors and the estimated free energy of ligand binding, we sought 
to further study the dataset descriptors long the principle components 
through the reduction of the dimensionality and linear transformation 
of the raw data (Principal component analysis (PCA)) [11]. Given 
the initial 120 compounds (represented as m) and for one of the 

Abstract
120 structurally diverse compounds previously reported as LPA1 inhibitors have been used to derive a 

mathematical model based on their descriptors. The pre- and post-cross-validated correlation coefficient (R2) is 0.79168 
(RMSE=0.61459) and 0.70939 (RMSE=0.72938) respectively. Principal component analysis (PCA) was also used to 
reduce the dimension and linearly transform the raw data. PCA results showed that nine (9) principal components 
sufficiently accounts for more than 98% of the variance of the dataset with a fitting mathematical equation. Our model 
accurately predicted ~86% of the compounds tested regardless of their structural diversities.
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compounds say ‘i’ its descriptors are represented by n-vector of real 
numbers xi=(xi1,..,xin, where n=1-17). Assuming that each molecule ‘i’ 
has an associated importance weight ‘wi’, (non-negative, real number) 
and that the weights is relative probability that the associated molecule 
‘xi’ will be encountered (adding up to 1); If ‘W’ denotes the sum of all 
the weights then, the eigenvalues and eigenvectors for the final data are 
estimable from the raw data using equation (4) where S is a symmetric, 
semi-definite sample covariance matrix. S can be diagonalized such 
that S =QTDDQ (Q is orthogonal, D is diagonal-sorted in descending 
order from top left to bottom right) [12].

1 1

1 1( ) , ( )
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m m
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i i
E x x w x Cov X S w x x xx

w w
(Equation 4)

The effect of the each of the principal components (eigenvectors) 
on the condition and the variance (Supplementary Table 1) shows that 
nine (9) principal components sufficiently accounts for more than 
98% of the variance in the dataset with a fitting mathematical equation 
(Equation 5). The 3D-scatter plot of the last three principal components 
(PCA7, PCA8 and PCA9) with respect to free energy is shown in Figure 
2; each point in the plot corresponds to a molecule colored according 
to free energy values.

PCA9 = 5.53218413e-001 -1.47174139e-003 X ASA -5.28867555e-
004 X E_stb - 9.64502253e-003 X Kier1 +2.92612997e-002 X Kier2 
-9.05227786e-004 X KierA1+2.57936088e-002 X KierA2 +4.04361621e-
002 X SMR_VSA0-2.37125484e-002 X SMR_VSA1 +5.03998977e-002 
X SMR_VSA2 +8.13078695e-003 X SlogP_VSA0 - 1.03630885e-002 
X SlogP_VSA1 -5.72337043e-002 X SlogP_VSA2 -1.64177905e-003 
X SlogP_VSA3 -7.55989243e-002 X SlogP_VSA4 -1.02026342e-002 X 
SlogP_VSA6 +1.79553609e-001 X a_acc -3.68295238e-002 X a_hyd 		
					                    (Equation 5)

When equation 3 was used to predict the Gibb’s free energy of the test 
set, it predicted accurately (residual free energy > +1.0) ~86% of the 
compounds regardless of their structural diversities (Figure 3).

Conclusion
Given the predictive finesse of this mathematical model, there 

is a question to be answered and two areas of potential applications 
to be exploited. Will this model sufficiently predict more chemically 
diverse compounds? If the yes, then we can predict a more robust 
interrelationship between statistics and Computer-Aided Drug 
Discovery in the future. Also, descriptor-based mathematical model 
screening may be piped as confirmatory steps following structure-
based screening for more successful hit-compound identification.
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Figure 2: 3D PCA plot of each test compound. Colours represent experimental 
free energy.
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Figure 1: Scatter plot showing the predicted and experimental free energy 
of LPA1 inhibitors.
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Figure 3: Structures of test compounds showing the experimental and 
predicted free energies (dG) of binding and residual values (dG_expt --- dG_
predicted).
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