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Background
Aerospace manufacturing test organizations have long realized 

there are cost benefits of having common test architectures and common 
test platforms [1,2]. This was understood at Hughes Aircraft before it 
became Raytheon [3], and after [4]. Digital approaches to capturing, 
characterizing, and analyzing parametric test data for requirements 
can be found at the Army circa 1983 [5], however this effort was not 
successfully implemented. More recently requirements for a common 
avionics factory test platform were identified by Sonnenberg et al. [6]. 
All of this research suggests that there is a general acknowledgement 
that common test platforms save money in manufacturing; however, 
a concerted effort is required to consolidate test platforms to realize 
the savings. One attempt at consolidation, as a common factory test 
platform is described [7].

The founder of Hughes Aircraft, Howard Hughes, purchased most 
of the missile products they produced from several different firms. 
Raytheon acquired these and other products through mergers and 
acquisitions resulting in a portfolio of disparate systems with some 
many decades old. These products have been upgraded over the years 
increasing the complexity of test requirements. Avionics products 
with embedded systems such as these also have very long development 
times, making the recovery of original formal test requirements difficult 
[8]. The result is a portfolio of products that were designed and tested 
under differing philosophies and architectures. This is a challenging 
environment to design and develop a common test architecture, and 
provided a significant opportunity for the analysis described in this 
paper.

Introduction
Today one business unit at Raytheon supports over 700 distinct 

test sets, representing a diverse portfolio of complex systems. Over the 
years products were designed and acquired, unique test sets were also 
designed and acquired. System failures, obsolescence and the cost of 
supporting a vast number of unique test sets motivated this business 
unit to develop common test platforms that could support multiple 
diverse missile programs.

An initial effort attempted to manually document testing 
requirements for our complete set of products. The initial estimate of 

Deriving Common Factory Test Platform Requirements Using Historical 
Test Data
Maksi L, Berryman S, Brio A, Burkhardt A, Elder S, Ferkau S, Gharbiah H, Lynch K* and Risch Q
Engineering and Information Technology, Raytheon Corporation, Tucson, AZ, USA

Abstract
Businesses that produce many complex products inevitably have disparate test requirements. Over time test 

solutions diverge despite having similarities contributing to increases in test cost. Mergers and acquisitions further 
complicate having common, well-understood, low-cost test platforms. By comparing the population of parameters 
tested across all products insight can be gained as to what groupings of parameters could have shared, common test 
platforms. The method described in this paper, in use today, describes a data mining and statistical approach to identify 
groups of test capability by testing ranges and limits, leveraging decades of historical testing data across a wide 
range of commercial products to design common test equipment at a large aerospace manufacturing organization. 
Clustering methods were used and evaluated to determine common factory test platform requirements, and compare 
them against existing test platform vendor capabilities.

effort required to complete this task was over 40 person-years (at 4 
weeks of subject matter expert time per test set). The most challenging 
aspect was that it would require a highly skilled engineering team that 
is in critically short supply. Such a pull of our talent would cause a huge 
strain on our need to deploy new products. Clearly, a method or process 
that would reduce the expected engineering workload would provide 
cost savings and a reduction in schedule risk.

The first step in our approach to design common test platforms 
was to build a set of test requirements that bound existing test 
measurements in every dimension. The original plan was to compile 
a set of requirements from an exhaustive search of Test Requirements 
Documents (TRDs) from over 100 of our current products. In the 
1970’s, MIL-STD-1519 specified the preparation of test requirements 
documents [9]. A test requirements document contains detailed 
specifications for every measurement that must be made to ensure 
the unit under test meets design requirements. A single test may be 
comprised of over 1000 test measurements. The standards associated 
with test platforms have changed considerably over the decades, with 
MIL-STD-1519 and its successor MIL-STD-1345B being retired, and 
the introduction of IEEE’s ATML (Automatic Test Markup Language). 
This ensured consistency with test component standards IEEE 1636.1 
(Test Results) and IEEE 1671.3 (UUT {unit under test} description) [10]. 
While automated test requirements documents have been considered 
as early as 1987 by Rockwell [11], implementing automation is made 
difficult in our environment where so many different products and test 
sets were inherited with existing documentation.

Many of the test requirements documents for our oldest products 
exist only in paper form. Deriving a complete list of test requirements 
from these documents would have required compilation, translation, 

*Corresponding author: Lynch K, Engineering and Information Technology, 
Raytheon Corporation, Tucson, AZ, USA, Tel: 0115207462050; E-mail: 
kevin_j_lynch@raytheon.com

Received October 01, 2018; Accepted October 25, 2018; Published October 31, 
2018

Citation: Maksi L, Berryman S, Brio A, Burkhardt A, Elder S, et al. (2018) Deriving 
Common Factory Test Platform Requirements Using Historical Test Data. J Inform 
Tech Softw Eng 8: 246. doi: 10.4172/2165-7866.1000246

Copyright: © 2018 Maksi L, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.



Volume 8 • Issue 4 • 1000246J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Maksi L, Berryman S, Brio A, Burkhardt A, Elder S, et al. (2018) Deriving Common Factory Test Platform Requirements Using Historical Test 
Data. J Inform Tech Softw Eng 8: 246. doi: 10.4172/2165-7866.1000246

Page 2 of 6

and expert review, each with their own difficulties. For example, we 
estimated that it would require a year and substantial expert review just 
to compile data needed to build the database for the test requirements 
analysis. The elapsed time meant that we would forego opportunities 
for commonality in the interim, so we searched for a different method 
to derive test requirements.

Approach
Instead of relying on an analysis of test requirement documentation 

we devised a plan to reverse engineer test requirements from the 
complete set of historical test data for all products into a common 
database. The process we used, described in this paper, is depicted in 
Figure 1.

We believed we could quickly evaluate what the overall test 
requirements should be based upon parametric values and units of 
measure in the existing test data. The parameter values would establish 
the ranges exercised in the test equipment. The units of measure would 
determine what testing capabilities are needed. The test data typically 
included the upper and lower limits of all test results. These limits were 
analyzed to determine the accuracy of measurements needed based 
upon the company standard Test Accuracy Ratio (TAR), the ratio of the 
upper and lower limits of the testing parameter, divided by the accuracy 
of the measurement. This analysis is crucial because this ratio is directly 
related to the confidence in the measurement. While the industry 
standard for metrology labs for test accuracy ratio is 4:1, this business 
unit’s goal was 10:1, an earlier and higher historical standard [12].

The test requirements had to be developed to adequately test 
components from multiple programs. The goal was to identify specific 
test requirements for a common test platform. The current authors’ 
primary requirement for a common factory test platform was to have 
maximum test coverage with minimal features, to minimize cost. To 
accomplish this, we compiled all of the historical testing data into a 
single database, and then analyzed the historical test parameter data 
across measurement unit types (e.g., ohms, amps, degrees Celsius, 
seconds, volts, MHz), as found useful [13].

Prior to performing any statistical approach it is necessary to pull 
the historical test data, group it into the corresponding measurement 
unit type (e.g., ohms, amps, degrees Celsius, seconds, volts), and apply 
the appropriate conversion formula to convert the data to a common 
measurement unit for each grouping type. The code has been automated 
to pull a list of units from a data warehouse, group the measurement 
unit types, and apply the appropriate conversion formulas. This 
necessitated harmonizing different historical measurement unit names, 
and dealing with missing data. One sided missing spec limits, instances 
where the lower spec limit (LSL) is less than the natural lower spec limit 
(e.g., LSL is -10 Ω, but the natural lower limit for Ohms is 0) or the 
upper spec limit (USL) is greater than the natural upper spec limit, are 
replaced with the natural lower spec limit and natural upper spec limit 
respectively from the stored data file. Clustering by units of measure 
helps designers understand how to optimize the coverage of a particular 
test platform. Many of the spec limits for current test measurements fell 
into a small number of clusters. We could match the test requirements 
to the range of testing from each vendor’s equipment. We initially 
used a K-means clustering algorithm to determine the clusters [14], 
representing potential common test platform configurations.

In the database we developed our units of measure analysis, the 
upper vs. lower limits of testing were plotted on a single graph (Figure 2 
shows a high-level example for voltage measurements). This allowed for 
quick inspection and rudimentary analysis. The clusters were signified 
by different colors, and provided a quick visual way to examine results 
that could recommend test set requirements.

We added a count of how many units of measure fall into or out of 
the testing capabilities contained in the clusters we created (Figure 3). 
This enabled us to use the amended data in R’s Shiny data analysis tool. 
By completing this analysis we were also able

to visualize how many of the test measurements conducted by the 
700+ test sets would fall outside the limits of each testing range cluster. 

The initial K-means clustering approach used in our analysis 
was expanded to include multiple clustering algorithms to suggest 

Figure 1: Process to identify clusters for common test platform configurations.



Volume 8 • Issue 4 • 1000246J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Maksi L, Berryman S, Brio A, Burkhardt A, Elder S, et al. (2018) Deriving Common Factory Test Platform Requirements Using Historical Test 
Data. J Inform Tech Softw Eng 8: 246. doi: 10.4172/2165-7866.1000246

Page 3 of 6

common factory test platform configurations [15]. Different clustering 
algorithms will perform better than others depending on the underlying 
data set. Clustering algorithms used were: Hierarchical Agglomerative, 
AGNES, PAM, CLARA, K-means, and Gaussian Mixture Model. Where 
applicable distance matrices are calculated using Euclidean method. 
The combination of algorithms performed for each measurement unit 
type was limited by the computing power available. The algorithms 
were coded in R and skipped a particular clustering algorithm if it was 
deemed not enough memory was available. For each of the algorithms 
ran, multiple internal criteria were used to determine the appropriate 
number of clusters. The internal validation criteria were used to 
measure compactness or cluster cohesion, separation, and connectivity. 
These criteria include Calinski-Harabasz, S-Dbw, Trace-W (within sum 
squares), Dunn, and Silhouette. An example output is in Table 1.

Depending on the available computing power, not all methods were 
used. The algorithm chose the maximum criteria given the available 
capacity. The number of chosen clusters was returned for each internal 
criteria run and ultimately determined by the maximum agreement 
among the criteria. The above mentioned process steps are performed 
for every measurement unit type for each clustering algorithm, except 
the Gaussian Mixture Model. The Gaussian Mixture Model applies a 
maximum likelihood estimation and Bayes criteria to identify the most 

likely model and number of clusters. It selects the optimal model based 
on Bayesian Information Criterion (BIC) for Expectation Maximization 
(EM).

Subsequently, the clustering algorithms performed with the chosen 
number of clusters were compared to one another using internal 
validation criteria. The criteria indices used to compare the algorithms 
were Calinski-Harabasz, S-Dbw, Xie-Beni, Dunn, and Davies-Bouldin 
(Table 2). 

Where the measurement unit type’s data volume exceeded the 
threshold a stratified sample was taken for each cluster. The internal 
criteria were calculated on the sample for each algorithm ran and 
compared to one another. Where feasible (below the threshold) the 
entire data set was used to calculate the internal criteria indices for 
each algorithm. The chosen clustering algorithm was determined by 
the maximum agreement among the criteria indices. In the event of a 
tie S_dbw was used as the deciding factor. The intent was to choose the 
clustering algorithm that performs best as measured by compactness, 
separation, and connectivity for each unit of measure. Depending on 
the underlying data set different algorithms performed better than 
others for that unit of measure.

The results provide quantitative and visual support, enabling 

Figure 2: Test requirements vs. test platform capabilities.

Figure 3: Data by units of measure.
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common factory test platform designers to map products to test 
equipment coverage across factories, and facilitate migration of 
existing factory configurations to common test platforms. The chosen 
algorithm results were stored for each measurement unit type and were 
displayed via a basic web application utilizing RStudio’s shiny. Figure 4 
is an example output that displays the lower and upper spec limits color 
coded by cluster assignment and sized on frequency of occurrence. 

Figure 5 plots a two dimensional clustering plot based on the 
chosen clustering algorithm partition. Component distances and 
shading are included. The clustering plots helped designers understand 
the implications of choosing a particular clustering algorithm.

For every cluster in each clustering algorithm, such as Figure 6 
below were produced. Figure 6 lists all the unique lower and upper 
spec limits for the selected measurement unit with the assigned cluster 
and frequency of occurrence. These tables helped designers better 
understand the relationship between ranges of test measurements, 
their frequency, and specific clusters.

Figure 7 shows an example of mapping the same clustered data 
from Figure 4 onto a proposed design for a common test set. The 
capabilities of a test set are represented by the colored boxes. All data 
points falling outside a colored box would require an individual, non-

common test set or a change to the test requirement that would meet 
the testing capability of the common test set.

The clustering analysis provide great insight as to what current test 
sets are able to test the products given the range of the historical test 
data; the next step was to analyze the existing capabilities of test sets 
and identify gaps between the testing requirements and the capabilities 
of the common test equipment. For instance, Raytheon had already 
purchased a test platform from an outside vendor intended to be used 
by multiple programs. We were tasked to determine if any additional 
test articles could be tested on this platform. To develop and test our 
method, we created a table of capabilities of the purchased system and 
used that data to represent a ‘what if’ design. The capabilities of this test 
platform were included in the clustering graph shown in Figure 6. We 
were able to compare the historical test data to a database of common 
test equipment capabilities. We conducted a simple greater than/less 
than analysis between the test data and the common test equipment 
capabilities, identifying each of the testing gaps between the test articles 
and the common test equipment. A count of units of measure was used 
to quantify the testing complexity. The number of gap adaptations 
required and degree of complexity are both related to cost and schedule. 
If the test article identified had a high percentage of units of measure 
that fit within the capabilities of a common test platform, we surmised 
it would be the easiest to deploy onto a common test platform. The 

Indices Number of clusters
Index Rule 2 3 4 5 6 7 8 9 10
calinski_harabasz Max 6.55E+04 2.52E+05 4.34E+05 3.56E+05 9.43E+05 1.30E+06 1.21E+06 1.22E+06 1.12E+06
s_dbw Min 2.04E+00 9.91E-02 1.57E-01 3.07E-01 1.32E-01 9.36E-02 6.59E-02 4.04E-02 3.92E-02
trace_w Max diff 1.18E+08 3.58E+07 1.58E+07 1.45E+07 4.66E+06 2.84E+06 2.62E+06 2.28E+06 2.20E+06
dunn max 6.80E-02 7.94E-02 2.15E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02
silhouette max 5.59E-01 8.54E-01 8.00E-01 8.21E-01 8.33E-01 8.19E-01 8.02E-01 7.86E-01 7.79E-01

Table 1: The indices in the above table are calculated to determine the optimum number of clusters for the clustering algorithm applied. A similar table was developed for 
each clustering algorithm.

Indices Clustering algorithm
Index Rule Gaussian Mixture CLARA K-means
s_dbw Min 3.04E-01 9.91E-02 1.87E-01

calinski_harabasz Max 6.61E+05 2.52E+05 2.82E+05
xie_beni Min 5.75E+01 1.43E+00 7.45E+00

dunn Max 5.08E-03 7.94E-02 3.40E-02
davies_bouldin Min 4.27E-01 2.82E-01 4.70E-01

Table 2: The indices in the above table were calculated to determine the optimum clustering algorithm for the unit of measure being evaluated. A similar table was developed 
for each unit of measure.
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Figure 4: Example output of tests, frequencies, clusters.
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Figure 6: Spec limits for the selected measurement unit.
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Figure 7: Test ranges, clusters, and capabilities.
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database automated Gap Analysis is capable of creating an a priori list 
that identifies the test articles easiest to deploy onto a common test 
platform given the previous criteria.

Results
The method described in this paper saved a significant amount of 

engineering labor hours in the development of common test requirements. 
Test platform designers utilized the user interface to determine if the 
measurement was within range of the common test platform or if a gap 
modification was required. The results provided quantitative and visual 
support of test coverage, enabling common factory test platform designers 
to map products to test equipment across factories. This facilitated 
migration of existing factory configurations to common test platforms. 
We expect lower test costs from increased test platform utilization and a 
reduction in factory test platform heterogeneity over time.

The contribution of this paper is describing how an analysis can 
be conducted using a relatively small number of test parameters to 
provide critical information for design of common test equipment. 
In the current complex manufacturing environment, critical test 
platform design decisions are better informed, and made more quickly 
and confidently by quantified, data-driven support (see [16] for a 
description of the underlying team providing this support).

Conclusion
In conclusion, the construction of a database of historical testing 

data has become a foundational tool to develop a design for a common 
test platform. When starting any project to build common test 
positions, modular or composable testing systems for production, or 
conducting analysis for future development a similar system may prove 
to be an invaluable tool. This toolset has proven to save engineering 
labor, and early indications are this approach will reduce test cost by 
suggesting specific test platform commonality.
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