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Introduction
 Dental pulp, which is surrounded by hard tissue (dentin and 

enamel), consists of pulp cells, odontoblasts, endothelial cells, neurons, 
immune system cells, and the extracellular matrix, and plays key roles 
in maintaining the function of healthy teeth [1]. Via the apical foramen 
of tooth, blood vessels supply nutrients to the tooth and remove waste 
products, and neural network warns for harmful stimuli as pain [2]. 
Immune system cells including dendritic cells, macrophages, and 
T-lymphocytes, prevent entry of microorganisms and other foreign
antigens [2]. Pulp cells and odontoblasts repair dentin that has been
lost due to tooth wear or dental caries, by depositing tertiary dentin
on the pulp chamber surface as a protective physical barrier in order to
block exogenous stimuli [2].

Once the inflammatory response in dental pulp is triggered by 
stimulation such as severe infection, the internal pressure in the pulp 
chamber significantly elevates, resulting in severe pain for patients and 
pulp tissue ischemia [2]. To release patients from the pain, dentists 
eventually remove an entire pulp by pulpectomy [3]. If pulpectomy is 
not performed, ischemia develops due to impaired blood circulation, 
resulting in pulp necrosis [4].

Non-vital tooth becomes vulnerable to exogenous stimuli due to 
complete loss of perception and immune functions, and weak due to loss 
of metabolic capacity [3]. Further, non-vital tooth is often re-infected by 
bacteria. The success rate of root canal retreatment is not particularly high 
[5-8], and it is often necessary to repeat root canal treatment. Repetition 
of root canal treatment leads to cracking and/or fracture of the root. As a 
result, the weakening of the tooth leads to tooth extraction.

To keep sound teeth during entire life of patients, the development 
of novel therapies for preservation and regeneration of dental pulp are 
essential.

Local Regeneration of Dentin-pulp Complex Following 
Pulp Amputation
Problems of present pulp amputation

To avoid pulpectomy, we aim to establish local regeneration therapy 

of the dentin-pulp complex from residual dental pulp following “pulp 
amputation”. Pulp amputation in the current dental treatment is as 
follows; after the removal of damaged coronal pulp tissue and the 
irrigation of the root canal orifice with chemical reagents, calcium 
hydroxide-based materials or mineral trioxide aggregate are applied to 
the root canal orifice in order to promote formation of dentin bridge for 
the preservation of root pulp [3,9-11] (Figure 1A). However, necrotic 
tissue layer remains at an interface between the residual root pulp and 
the dentin bridge after the pulp amputation [3]. It is also known that 
the newly formed dentin bridge by pulp amputation is porous hard 
tissue with a low degree of calcification, thus they have poor ability to 
protect the residual root pulp [12]. Most important issue is that pulp 
amputation itself never leads to the regeneration of pulp or dentin that 
was lost in the coronal portion.

Novel strategy for the local regeneration of dentin-pulp 
complex following pulp amputation

Our strategy for the local regeneration of dentin-pulp complex 
is to induce outgrowth of pulp cells, capillaries, and neurons from 
the residual root pulp with the modification of the current therapy 
(Figure 1B). It is well known that three factors are considered to be 
essential for tissue regeneration; cell, growth factor, and scaffold [13]. 
For successful regeneration, it is also necessary to induce a capillary 
network and a closed space that will create a suitable environment [14]. 
In the development of the dentin-pulp complex regeneration therapy 
following pulp amputation, it is possible to induce dental pulp stem 
cells (or pulp progenitor cells), which can differentiate into odontoblasts 
producing newly dentin, and capillaries from the residual root pulp 
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Abstract
It is generally accepted that dental pulp plays important roles in maintaining tooth. Pulp inflammation caused by 

dental caries or tooth fracture sometimes results in a severe pain, and pulpectomy to remove entire dental pulp is 
often performed by dentists to release a patient from the pain. After pulpectomy, the tooth without vital pulp loses its 
defensive ability and becomes vulnerable to exogenous stimuli. It will be valuable to establish a local regeneration 
therapy of dentin-pulp complex from residual dental pulp before pulpectomy to preserve abilities of dental pulp. We 
are trying to develop a novel therapy to induce regeneration of dentin-pulp complex following pulp amputation. In this 
approach, growth factors and a scaffold are exogenously supplied, while cells and blood vessels are induced from 
the residual dental pulp in the tooth root canal. Establishment of a newly method for pulp amputation without leading 
necrosis of the residual root pulp is also essential for the local regeneration therapy of dentin-pulp complex. In this 
mini review, we show our research strategy for local regeneration therapy of dentin-pulp complex.
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tissue. Also, a closed space for tissue regeneration can be secured by 
application of temporary sealing with adhesive materials that are 
already used in the clinic. For the establishment of local regeneration 
of dentin-pulp complex, the choice of an appropriate growth factor, 
appropriate delivery system of a growth factor, and a scaffold to induce 
stem cells and blood vessels from the residual pulp are critical points.

Candidate growth factor for regeneration of dental pulp 

 Fibroblast growth factor-2 (FGF-2) plays an important role in 
physiologic conditions of odontogenesis [15-17], as well as pathologic 
conditions [18-20]. We focused on the potency of FGF-2 and chose it 
as the growth factor for local regeneration therapy of the dentin-pulp 
complex. 

Delivery system of growth factors to the local tissue site is one of 
important factors for the regeneration. In vivo, growth factors usually 
effects for a certain period at low concentrations. If the growth factors 
are administered by directly injection in the pulp chamber, they rapidly 
lose their biological activities due to diffusion and degradation, and 
their effects are eliminated. To overcome this problem, we focused on a 
gelatin hydrogel incorporating FGF-2. It was previously demonstrated 
that a gradual and continual release of FGF-2 was achieved by in vivo 
biodegradation of gelatin hydrogels that incorporated FGF-2 [21-24]. 
Furthermore, the controlled release of FGF-2 from gelatin hydrogels 
induced regeneration of angiogenesis [25], bone [26-28], periodontal 
tissues [29], and other tissues [30-32].

To clarify whether FGF-2-incorporated gelatin hydrogel induces 
dentin-pulp complex regeneration, we implanted them with collagen 
sponge scaffold into the coronal pulp chamber of the rat first molar 
after pulp amputation. We found that controlled release of FGF-2 from 
gelatin hydrogel induced regeneration of pulp tissue and osteo-dentin 
like hard tissue at the defect area, demonstrating the efficacy of FGF-2-
incorpotated gelatin hydrogel [33,34].

Suitable scaffold for dentin-pulp complex regeneration therapy

 In our in vivo study, we used collagen sponge as scaffold and it 
did not show negative effects on the local regeneration of dentin-pulp 

complex. However, no studies had confirmed which scaffold materials 
were suitable for dentin-pulp complex regeneration in pulp chamber. We 
sought a suitable scaffold for the therapy and focused on the potential of 
hyaluronic acid (HA). HA is one of glycosaminoglycans that are widely 
distributed in human body. It plays important roles in maintaining 
morphologic organization by preserving extracellular spaces and is 
reported to be well suited for tissue engineering material [35-39]. 
Further, HA was reported to suppress production of proinflammatory 
cytokines such as interleukin-1 and tumor necrosis factor-alpha by 
activated macrophages [40,41]. Based on these superior properties, HA 
is extensively used in the fields of health care and cosmetics today.

To clarify whether HA sponge is useful as a scaffold for dentin-pulp 
complex regeneration therapy, we carried out in vitro and in vivo studies. 
In vitro study, odontoblast-like cells (KN-3 cells) established from the 
incisors of 7-day-old rats were used [42,43], and found that KN-3 cells 
adhered to HA sponge. In vivo study, implantation of HA or collagen 
sponges in pulp and dentin defect areas following pulp amputation, 
showed that pulp tissue regeneration was induced into tissue defect, 
while inflammatory cell invasion in HA sponge implantation area was 
significantly less compared with collagen sponge [44]. These results 
suggest that HA sponge has an ideal property as a scaffold for dental 
pulp regeneration.

These studies suggest the feasibility of the local regeneration 
therapy following pulp amputation using existing agents and materials. 
However, for the clinical application of this therapy, we have to establish 
new techniques for pulp amputation without necrosis of the root pulp, 
as well as the combination of FGF-2 with other factors to induce 
regenerated dentin with proper quantity and quality.

In vitro Studies to Protect Dental Pulp from Necrosis
In a tooth targeted for pulp amputation, coronal dental pulp is in an 

inflammatory state because of dental caries and/or trauma. Amputation 
of coronal vital pulp will cause an additional severe stimulation of 
root pulp, resulting in necrosis of the remaining root pulp. A critical 
point to avoid necrosis is how to regulate heat stress and ischemia 
simultaneously produced by pulp amputation.

Figure 1: (A) Conventional method for vital pulpotomy. Coronal pulp and dentin are completely lost. 
(B) Local regeneration of dentin-pulp complex from residual pulp following vital pulpotomy. Several growth factors and scaffold are implanted into the pulp and dentin 
defect area. Residual root pulp and blood vessels are induced into the defect area, and dentin-like hard tissue is formed.
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 Heat stress produced by rotary cutting instruments used to remove 
infected dental hard tissue is known as one of the most severe exogenous 
stimuli for dental pulp [2,45]. It is also known that ischemia, caused 
by inflammation and/or local anesthetics containing a vasoconstrictor 
[46-48], induces hypoxia and starvation in dental pulp [49,50]. Pulp 
cells have abilities to resist to heat stress and ischemia [51,52]. We 
examined the combinatorial effects of these stimuli, and found that the 
effects of heat stress on dental pulp cells were significantly reinforced 
by starvation. These results imply that use of vasoconstrictor-free local 
anesthetic would be beneficial for preserving the root pulp following 
pulp amputation [53,54].

We have also performed studies aimed to increase the resistance 
ability of pulp cell to lethal heat stimuli. It is known that fever-range heat 
stress, the range of 40-42°C, has a beneficial role in various mammalian 
cells [55-57], and exogenous fever-range heat stress as hyperthermia 
has been widely used as a physical therapy for various diseases [58]. 
We hypothesized that the fever-range heat stress for several hours 
can increase resistance of pulp cells to stimuli. KN-3 cells were pre-
treated with fever-range heat stress at 41°C for 12 hours, followed by 
additional lethal heat stress at 49°C for 10 minutes. We found that 
the cells pre-treated by heat stress survived with odontoblast-like 
properties after lethal heat stress, and that various heat shock proteins 
(HSPs) accumulated in the cells [59], and transient cell-cycle arrest was 
induced by the fever-range heat stress for 12 hours [60]. Accumulation 
of HSPs and/or cell-cycle arrest is able to induce cellular resistance to 
various stimuli [61-65]. We are now continuing research to identify the 
effective methods to induce HSPs accumulation and transient cell-cycle 
arrest.

In vitro Studies to Induce Regenerated Dentin with 
Proper Quality and Quantity

Previously we showed that newly dentin was induced on the occlusal 
side of the regenerated dental pulp through the controlled release of 
FGF-2 from gelatin hydrogels [34]. However, the induced dentin did 
not have an ideal structure with dentinal tubules, and its quantity was 
insufficient for protecting the dental pulp or withstanding bite forces. 
These weak points should be overcome before clinical application.

Bone morphogenetic protein 2 (BMP-2) is known to induce the 
differentiation of dental pulp stem cells into odontoblasts [66], and in 
vivo dentin formation after pulp amputation [67]. BMP-2 is a growth 
factor to be approved by the US Food and Drug Administration for 
clinical use such as oral maxillofacial surgery [68]. Our previous 
study with KN-3 cells showed that BMP-2 induced the expressions of 
dentin matrix proteins such as dentin sialoprotein and dentin matrix 
protein-1, markers of the differentiation of odontoblasts [69-71], and 
that Smad signaling pathway involved in the induction process [72]. 
Furthermore, we found that platelet-rich plasma (PRP) enhances 
differentiation of KN-3 cells, as well as alkaline phosphatase activity 
[73]. PRP is an autologous blood product, and it has been used for 
wound healing of soft tissue and bone repair as a source of growth 
factors in several clinical settings such as orthopedic surgery [74-77]. 
These results suggest that the suitable combination of BMP-2, FGF-2 
and PRP may solve the problem in local regeneration of dentin-pulp 
complex after pulp amputation.

Conclusion
In this mini-review, we show our strategy for the local regeneration 

therapy of dentin-pulp complex, and critical points to overcome before 
clinical application of this method with ideal efficacy and safety. We 

believe that our challenge for the local regeneration therapy of dentin-
pulp complex would change the current dental treatment to preserve 
dental pulp.
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