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ABSTRACT

Pre-metastatic niche formation at distant sites can be initiated by the primary tumor through “education” of non-
tumoral cells present in the primary cancerous niche. Among other participants, immune cells and their secreted 
factors can boost the successful seeding of the distant disease. Accordingly, we showed that RANKL production by   
breast tumor-primed   T cells is   required   for development   of bone   metastasis. Pro-osteoclastogenic tumor-specific 
RANKL+ T cells were shown as messengers from the periphery to the bone marrow, where they alter bone turnover 
homeostasis in favour of osteoclasts and before tumor colonization. Pre-metastatic T cell-mediated osteolytic disease 
generates a rich environment that will allow further colonization of the bone cavity by the metastatic clones. Once 
initial seeding of the bone tissue is achieved, tumor cells can continue the osteolytic process on their own, feeding 
themselves through the vicious cycle established. More recently, we explored the contribution of dendritic cells for 
the maintenance of such tumor-specific T cells activity for bone marrow pre-metastatic niche formation. Indeed, 
dendritic cells can act as both an APC for RANKL+ tumor-specific T cells activation and as an osteoclast-like cell, 
amplifying the pre-osteolytic phenomena. Here, we discuss the potential differentiation of DCs into OCs for bone 
pre osteolytic disease establishment, either directly or through the maintenance of RANKL+ T cell inside the bone 
marrow. The understanding of the cellular and molecular interactions that build the bone pre-metastatic niche can 
be directed towards prevention and/or treatment of metastatic bone disease.
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ABBREVIATIONS

RANK: Receptor Activator of NF-B; RANKL: Receptor Activator 
of NF-B ligand; OPG: Osteoprotegerin; M-CSF: Macrophage 
Colony-Stimulating Factor; TRAP: Tartrate-Resistant Acid 
Phosphatase; NFATc1: Transcription Factor Nuclear Factor of 

Activated T Cells

INTRODUCTION

Metastasis is the leading cause of death in cancer patients. Bone is 
one frequent site for breast cancer metastasis with around 70% of 
incidence in patients with invasive disease, affecting both quality 
of life and survival rates [1,2]. Once breast cancer cells have spread 
to bone´s microenvironment it become incurable, causing bone 
destruction and complications secondary to bone metastasis such 
as bone pain, pathologic fractures, hypercalcemia and paralysis due 

to spinal cord compression [3]. Mundy´s vicious cycle hypothesis 
proposed that once in the bone, breast tumor cells dysregulate 
bone turnover homeostasis, that is controlled by the crosstalk 
between osteoclasts (OCs), bone-resorbing cells; osteoblasts (OBs), 
bone-forming cell; osteocytes, mature osteoblasts embedded in 
the bone matrix; and chondrocytes, via RANK-RANKL-OPG 
molecular system [4]. This dysregulation tips the balance in favor 
of osteoclasts leading to an intense release of growth factors 
stored in the mineralized matrix, which in turn stimulate tumor 
outgrowth, and give rise to a clinically significant osteolytic disease 
characterized by a constant loss of bone mass and haematological 
alterations [1,5].

Primary breast cancer, have been shown to ‘‘prepare’’ distant organs 
for tumor cell colonization even before their arrival [6-8], reinforcing 
the active participation of the metastatic tissue as first proposed by 
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Stephen Paget in his “seed and soil” theory [6,9]. Immune cells 
such as macrophages (Mφs) [10,11], dendritic cells (DCs) [12], 
neutrophils [13] and T cells [11,14-16], are associated with the 
formation of those permissive and supportive microenvironments 
in secondary organ sites, termed “pre-metastatic niches”, 
highlighting the importance of basic mechanisms responsible for 
tumor cells distant establishment [7,17]. Accordingly, it has been 
found that cells of the immune system acting as pro-tumor cells 
are enriched in the pre-metastatic niches and support cancer cell 
seeding via paracrine signaling and/or by suppressing anti-tumor 
immune cells [7,17-19].

Dendritic cells (DCs), the most potent antigen-presenting cells 
(APCs) known and osteoclasts share several features, as they 
both originate from myeloid progenitors [20-27]. DCs display a 
high developmental and functional plasticity depending on local 
factors and stimuli encountered during their differentiation and 
maturation, providing a multitude of necessary signals crucial 
for shaping the immune response [28]. Indeed, in the past 15 
years, several studies showed that DCs plasticity can allow their 
differentiation into OCs multinucleated giant cells (DC-OCs) 
[29-31]. In this mini-review, we discuss DCs plasticity properties 
regarding bone marrow pre-metastatic niche formation [32].

T CELL-DEPENDENT FORMATION OF BREAST 
TUMOR PRE-METASTATIC BONE NICHE

Bone and hematopoietic immune cells share the same 
microenvironment in the bone marrow and interact with each 
other to cooperatively carry out the functional activities of 
osteoimmune system [4,33]. This interaction has been appreciated 
since pioneering studies on immune cell-derived OC-activating 
factors in the 1970s and 1980s [34–36]. It is well known that 
both systems share a variety of molecules, including cytokines, 
chemokines, hormones, receptors and transcription factors [4]. 
For the last 20 years, studies from the osteoimmunology field 
have revealed that immune cells exert a powerful impact on bone 
remodeling system mechanisms under pathological conditions 
[4,37-49], and new evidences have demonstrated that bone cells 
reciprocally regulate immune cells and hematopoiesis [38]. Indeed, 
several studies showed that there is a close relationship between the 
abnormal activation of pathogenic specific T cell subtypes (Th17 
and exFoxP3Th17) and osteoclasts dysregulated activities [33,38,41] 
in the context of rheumatoid arthritis [4,38,41,42], periodontitis 
[43,44], osteoporosis [45,46] and bone metastases [15]. 

Using the 4T1 triple negative metastatic mouse model of breast 
carcinoma, we have previously demonstrated that RANKL tumor-
specific CD4+ Th17 T cells are the major players for pre-metastatic 
niche bone formation in the 4T1 breast tumor model [15]. In 
fact, osteolytic disease is observed before tumor cells colonize the 
bone cavity. This pre-metastatic osteolytic disease is mediated by 
RANKL, produced by specific-tumor T cells. Moreover, inhibition 
of RANKL production (using shRNA) in fresh tumor-primed T 
cells does not generate osteolytic disease and the associated pre-
metastatic niche. Consequently, development of bone metastases 
is completely absent. Altogether, we proposed an extra step to 
Mundy’s vicious cycle where initial bone consumption, mediated 
by pre-metastatic T cells, generates a rich microenvironment that 
will allow further colonization of the bone cavity by the metastatic 
clones [47]. Once the initial seeding of the bone tissue is achieved, 
tumor cells shall continue the osteolytic process on their own, 

feeding themselves through the vicious cycle established within the 
bone microenvironment [15]. 

Even though antigen-primed and memory T cells have been 
described to seed the bone marrow in different models [48–50], it is 
still unclear whether the large fraction of activated/memory T cell 
in the marrow is activated in lymph nodes or locally [48,49,51]. As 
pre-metastatic osteolytic disease happens much before metastatic 
colonization, it is not known how the tumor antigen would get 
to the bone marrow to be recognized by T cells. We envisage at 
least two non-exclusive possibilities: (i) cancer-derived exosomes 
could travel to the bone cavity, and provide tumor antigens to be 
processed and presented by local resident DCs [52,53] and/or (ii) 
DCs loaded with tumor antigens at the primary tumor or at the 
tumor draining lymph nodes, can migrate to the bone marrow 
where antigen presentation would take place [54,55]. However, 
regardless of priming, in breast tumor bone metastasis, the role of 
DCs has never been addressed.

DENDRITIC CELLS DEVELOPMENT INTO 
OSTEOCLASTS TYPE CELLS (DC-OCs)

Dendritic cells (DCs), the most potent antigen-presenting 
cells (APCs) are responsible for activation of naïve T cells and 
orchestration of tolerogenic and immunogenic responses [22]. DCs 
present antigens to T cells in the context of major histocompatibility 
(MHC) molecules, with additional input delivered in the form of 
costimulatory surface ligands and cytokines [27,56,57]. According 
to the nature of DCs stimuli, different specific T cells phenotypes 
would be achieved [27,56,57]. Many subsets of DCs with unique 
and specific functions, morphology, and localization have been 
described [58]. They display a high developmental and functional 
plasticity depending on local factors and stimuli encountered 
during their differentiation and maturation, providing a multitude 
of necessary signals for shaping the immune responses [27,56,57]. 
Plasticity can also allow DCs to develop into other cell types, 
among them OCs (DC-OC), what is not unexpected considering 
their same origin from common myelopoietic stem cell progenitors 
[29–31]. 

DCs and OCs are both affected by multiple shared immune 
factors in bone marrow microenvironment [29,59]. Many crucial 
cytokines for DCs immune physiology have been indicated to be 
equally important for OCs differentiation in the skeletal system 
[60–62]. Both OCs and DCs are activated through RANK-RANKL-
OPG signaling pathway, which not only plays important roles in 
homeostatic bone remodeling [38,63] but is also essential for the 
development and function of primary and secondary lymphoid 
organs, as well as the mammary tissue [38,62,64–67]. Regarding 
the skeletal system, RANKL or RANK-deficient mice present with 
severe osteopetrosis due to an osteoclast deficiency and lack lymph 
nodes and Peyer´s patches as well [68–70]. In contrast, mice lacking 
OPG, the decoy receptor for RANKL, exhibit severe osteoporosis 
characterized by an intense trabecular and cortical bone porosity. 
Surprisingly, these animals also exhibit medial calcification of 
the aorta and renal arteries, suggesting that regulation of OPG 
signaling pathway play a role in the long observed association 
between osteoporosis and vascular calcification [71,72]. 

Regarding RANK-RANKL-OPG signaling pathway in osteoimmune 
system, effector T cells expressing RANKL promote DC survival 
and increase their longevity, via CD40 upregulation and leading 



3

Monteiro AC, et al. OPEN ACCESS Freely available online

J Clin Cell Immunol, Vol.12 Iss.3 No:1000616

to RANK molecule overexpression on DCs [73,74]. In addition, 
RANK-RANKL system increases antigen-specific primary and 
memory T cell responses in vivo [75]. OPG, a CD40-regulated 
gene in B cells and DCs, also regulates B cell development and 
function regulating B cell maturation for efficient antibody 
responses [76]. Moreover, OPG, which can also be expressed by 
DCs, binds to TRAIL (TNF-related apoptosis-inducing ligand) 
produced by activated T cells [77]. This reciprocal action induces 
apoptosis of DCs, suggesting that OPG might also be a regulatory 
key factor of DC survival [29,77]. RANK is expressed by both cell 
types [29,59,78–80], DC and OC, and its activation is dependent 
on its ligation by RANKL present and/or secreted by immune 
and/or bone cells, in homeostatic and pathological conditions 
[61,69,73,81–84]. For OC differentiation and activation, RANKL-
RANK must encounter on the surface of pre-OC. As a result, the 
intracellular signaling cascades lead to the induction of NFATc1 
(transcription factor nuclear factor of activated T cells 1), the 
master regulator of osteoclastogenesis [85–87]. Considering the 
above, it is reasonable to think that RANK signaling on the surface 
of a DC, present inside the BM and close to OC niches, could 
differentiate into OCs. 

Indeed, for the last 15 years, it has been reported that immature 
DCs can develop into OCs in vitro, when cultured with 
osteoclastogenic factors, M-CSF and RANKL or RA synovial 
fluids containing pro-osteoclastogenic cytokines [30,88,89]. The 
same phenomenon was also shown in vivo [90–92]. In humans, 
when multiple myeloma derived DCs were cultured with RANKL+ 

plasma cells they differentiated into OCs [93]. Moreover, DCs 
derived from Langerhans cells Histiocytosis patients are capable to 
develop into OC type-cells when stimulated by IL-17A [94–96]. In 
addition, citrullinated proteins and RA specific anti-citrullinated 
protein antibodies deposit on DCs surface as immune complexes 
and promote differentiation toward the OC lineage, implicating 
DC-OCs in the bone consumption observed in RA [97]. Regardless 
the presence of DCs at bone resorptive sites during inflammatory 
conditions [29,69,98–103], their direct contribution to bone 
resorption, either as APCs, keeping osteoclastogenic Th17 T cells 
locally activated, or overcoming their own phenotype achieving 
OCs mature functional phenotype, has yet to be solved. In 
pathological conditions, it has been assumed that the increase in 
pro-inflammatory cytokines or the presence of bacterial antigens 
could provide a supportive environment for the development of 
DCs into OCs [30,90,91,103]. Indeed, it has been confirmed that 
multinucleated giant cells expressing markers of DCs and OCs are 
located next to the bone in inflammatory bone disease [103]. In 
bone metastasis, DC-OC differentiation was shown to be induced 
by RANKL, either recombinant or produced by specific-tumor T 
cells [32]. Although DC-OC and conventional OCs have similar 
morphological features and mineral matrix resorbing activity, 
their role regarding T cell activation is not the same, in bone pre-
metastatic disease context [32].

DC-OCs AS POTENT PLAYERS IN THE CONTEXT 
OF BREAST TUMOR BONE METASTASIS

Several reports have indicated that IL-23 plays a critical role in 
inflammatory Th17 immunity establishment [104,105]. It does 
so by enhancing IL-17 production in vitro and in vivo through the 
expansion of already committed Th17 cells [106,107]. Indeed, two 
independent reports showed that systemic IL-23 [108] or IL-23 
expressed by conventional OCs [109] drives severe arthritis causing 

a profound osteolytic phenotype mediated by direct activation of 
CD4+ Th17 T cells. Additionally, circulating DCs expressing IL-23 
are normally recruited to inflamed tissue, where they could either 
play an indirect role in osteoclastogenesis by stimulating T cells 
to express pro-osteoclastogenic cytokines; release of TRAP and 
cathepsin K by resident OCs; or by direct releasing of cathepsin 
K itself [69]. A still-open question is whether growth factors 
controlling homeostatic osteoclastogenesis are also involved in 
de novo inflammatory-induced osteoclastogenesis of potent DC-
OCs, with bone resorption activity directly participating at the 
inflammatory disease site. It would be of great interest to determine 
whether the biological function of mature OCs derived from bona 
fide OCs precursors or derived from immature DCs differs, either 
in physiological or in pathological conditions.

In fact, one characteristic function of DCs is its efficiency to activate 
T cells [21] and shape the T cell fate [20,21,110], characteristics not 
necessarily shared with OCs. Interestingly, we recently showed that 
OCs derived from conventional splenic DCs, but not conventional 
BM derived OCs, are incredibly good in activating T cell 
proliferation and cytokine secretion (Figure 1) [32]. DC-OCs secrete 
high amounts of IL-23, which in turn boosts IL-17 and RANKL 
production by T cells, feeding the positive osteoclastogenic loop 
of adaptive T cell immunity. This positive loop, not shared with 
conventional OCs, has IL-23 as one limiting step since blocking 
IL-23 with monoclonal antibody inhibits T cell IL-17 and RANKL 
production. Of note, is the fact that conventional OCs do not 
stimulate T cell proliferation, nor IL-17 and RANKL production 
[32]. Immune interactions between T cells and DCs, in bone 
inflammatory disease scenarios, responsible for DCs development 
into OCs type cells, were previously investigated [90,91]. It was 
reported that DC-OCs can partially reverse a mice osteopetrotic 
phenotype in vivo because of the presence of inflammatory CD4+ T 
cells that are able to maintain a high RANKL expression by bone 
marrow stromal cells [91]. Moreover, interactions in vitro between 
activated CD4+ T cells and CD11c+ DCs generate DC-OCs capable 
of inducing bone loss after adoptive transfer in vivo [90]. 

Concerning RANKL and M-CSF cytokines dependence to induce 
osteoclastogenesis from BM precursor cells or DCs, high levels of 
RANKL is required for DC-OC development in vivo and for the 
activity and survival of DCs [63,74]. In particular, the longevity 
of mature DCs pretreated with RANKL is greatly enhanced [75]. 
Moreover, RANKL augments the ability of DCs to stimulate T cell 
proliferation [82,111,112]. The resulting increase in DC survival 
is accompanied by a proportional increase in DC-mediated T cell 
proliferation. Therefore, we can suppose that RANKL enriched 
environment set up by osteoclastogenic CD3+ T cells located inside 
the BM probably contributes to a higher DC survival ratio which 
in turn would support T cells activities in promoting the pre-
metastatic niche formation [32]. 

Differentiated DCs can carry antigen from peripheral tissues via 
lymphatics to lymph nodes, and also travel from the peripheral 
tissue into the blood and to the spleen, liver, lungs and bone 
marrow, where they were better retained than in most other tissues, 
by microvascular P and E-selectin as well as VCAM-1 [49,54]. 
Moreover, by adoptive transfer experiments in mice, it is already 
known that bone marrow can prime naive T cells and recruit 
effector T cells, but it also serves as a site of preferential proliferation 
for CD4+ and CD8+ T cells [49]. Altogether, it becomes clear that 
DCs and T cells interact with each other and, importantly, with the 
tissue they are in, contributing to its homeostasis.
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CONCLUSION

In conclusion, we showed that DC-OCs are excellent immunogenic 
APCs, different from OCs derived from macrophages or bone 
marrow conventional precursors. As so, DC-OCs will boost the 
T cell response unbalancing the bone remodeling system towards 
osteolysis. We can say that DCs are partners for RANKL+ Th17 cells 
in the context of bone pre-metastatic osteolytic disease as both, an 
OC-like cells, with osteolytic capacity which keeps its excellence as 
antigen presenting cell.

PERSPECTIVES

We consider that our study has introduced DC-OCs as tumor-
specific T cells partners for the formation and/or maintenance of 
breast tumor bone marrow pre-metastatic niche. Moreover, the set 
of our studies are revealing the cellular and molecular dynamics 
interaction for pre-metastatic niche formation. This complex 
network can be used either as prognostic tools and/or biomarkers 
of pre-metastatic bone niche for breast cancer patients or even 
as therapeutic targets. Multiple questions remain and need to be 
investigated to translate our current knowledge toward clinical 
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