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Introduction
Delta-9-tetrahydrocannabinol (THC) is the main psychoactive 

compound of cannabis. Cannabinoids have been proposed as 
therapeutic drugs in multiple sclerosis (MS) for both the control of 
spasticity and the modulation of brain inflammation [1-7]. THC 
interacts mainly with two receptors, cannabinoid receptor 1 (CB1) 
and cannabinoid receptor 2 (CB2) [8-11] CB2 was first identified in 
immune cells [12]. In brain, the expression of CB2 by microglial cells 
[13] is upregulated when they are activated [14].Recent studies show
that glial cells also express cannabinoids-like receptors, which seems to
be involved in the regulation of immune functions (for review, [15]).
The Peroxisome Proliferator-Activated Receptors (PPARs) can be
activated by cannabinoids [16] and may mediate some of their anti-
inflammatory effects (for review, [17]). Ajulemic acid, an analog of a
metabolite of THC binds to PPAR-γ [18], and endocannabonoids were
shown to be natural activators of PPAR- α and PPAR-γ [16].

The anti-inflammatory potential of THC, as well as of endogeneous 
and synthetic agonists of the various cannabinoid receptors has been 
widely reported. THC can block NO liberation in LPS-stimulated 
macrophages [19]. Facchinetti and collaborators [20] have shown that 
endogenous and synthetic cannabinoids prevented TNF- α release by 
LPS-stimulated microglia. In astrocytes, endogenous cannabinoids 
have been shown to inhibit NO and TNF- α production induced by 
LPS [21,22]. Furthermore, cannabinoids can induce the expression 
of anti-inflammatory cytokines such as IL-4 and IL-10 [23]. They 
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Abstract
Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple 

sclerosis. In the present study, we examined whether a modulation of brain inflammation by THC may protect against 
demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment 
(3x) with the two inflammatory agents interferon-γ (IFN-γ) and lipopolysaccharide (LPS). The effects of THC on 
an acute inflammatory response were also examined by treating the aggregates with a single application of the 
two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory 
response were analyzed.

THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content 
measured by immunoblotting. It prevented IFN-γ + LPS-induced microglial reactivity; and decreased the IFN-γ + 
LPS-induced increased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, i-NOS and TNF-α 
mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single 
application of the inflammatory agents, but not after repeated applications. 

THC protected partially against the IFN-γ + LPS-induced demyelination. The protective effect of THC on IFN-γ + 
LPS-induced demyelination may be due to a decrease of the inflammatory response. However, the anti-inflammatory 
effect of THC on some inflammatory markers is lost when the inflammatory response is more prominent and of 
longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of 
the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.

can inhibit neurodegeneration in models of multiple sclerosis [24]. 
In experimental autoimmune encephalomyelitis (EAE), an animal 
model of MS, attenuation of the interactions between immune cells 
and endothelial cells by cannabinoids may be neuroprotective [25]. It 
has been proposed that CB2 receptor played a key role in attenuating 
EAE progression through modulation of the immune response [26]. 
Activation of the endocannabinoid system was shown to be beneficial 
in a chronic mice model of MS, reducing neuroinflammation, 
excitotoxicity and motor disability [27-29].

In the present work, serum-free aggregating brain cell cultures [30] 
were used as model to study the effects of THC on brain inflammation, 
and demyelination. In these three-dimensional cell cultures, all 
brain cell types (i.e., neurons, astrocytes, oligodendrocytes, and 
microglia) are present in proportions close to the situation in vivo, 
and organized in a histotypic manner. During 3-4 weeks in vitro, a 

Jo
ur

na
l o

f Clinical Toxicology

ISSN: 2161-0495

Journal of Clinical Toxicology



Page 2 of 8

Citation: Defaux A, Schiffrin M, Vorlet-Fawer L, Spiehlmann A, Giroud C, et al. (2012) Delta-9-Tetrahydrocannabinol (THC) Protects Partly against 
Demyelination by Modulating the Inflammatory Response: An In Vitro Study in Aggregating Brain Cell Cultures. J Clinic Toxicol S6:002. 
doi:10.4172/2161-0495.S6-002

J Clinic Toxicol               Neuropharmacology & Neurotoxicity             ISSN: 2161-0495 JCT, an open access journal

sequence of morphogenic events occur, including the formation of 
compact myelin around axons [31]. It is important to note that this 
in vitro model is devoid of lymphocytes and allows to study the role of 
neuroinflammation in the demyelinating and remyelinating processes 
in the absence of the peripheral inflammatory cells.

Previous work [32] showed that in mature aggregating brain 
cell cultures, the combined treatment with interferon-γ (IFN-γ and 
lipopolysaccharide (LPS), two inflammatory agents, induced microglial 
activation and the upregulation of a variety of inflammatory mediators 
including cytokines and chemokines. This inflammatory response was 
accompanied by demyelination in the absence of neuronal damage 
or cell death. In the present work, making use of this experimental 
paradigm, it was found that THC prevented the microglial activation 
triggered by the combined treatment with IFN-γ and LPS, and partially 
protected against the concomitant demyelination. This protective effect 
may be due to a decrease of the inflammatory response. In order to 
further study the anti-inflammatory potential of THC, the mRNA 
expression of i-NOS, TNF-α and IL-1β, as well as the phosphorylation 
state of p44/42 and p38 MAP kinases were measured after a single and a 
repeated (3x) treatment with the two inflammatory agents. In addition, 
the involvement of PPAR-γ in the anti-inflammatory effects of THC 
was examined by using an antagonist of PPAR-γ and by measuring the 
mRNA expression of PPAR-γ.

Materials and Methods
Aggregating brain cell cultures

Serum-free aggregating brain cell cultures were prepared from the 
telencephalon of 16-day embryonic rats (Hsd:SD, Harlan, NL-5960 AD 
Horst) as described previously in detail [30,33]. The embryonic brain 
tissue was mechanically dissociated using nylon sieves of 200-µm and 
100-µm pores, and the dissociated cells were incubated under gyratory 
agitation in serum-free medium. The resulting aggregate cultures 
were maintained in serum-free medium (DMEM adjusted for serum-
free conditions) under constant gyratory agitation (80 rpm) at 37°C 
in an atmosphere of 10% CO2 and 90% humidified air. Media were 
replenished by the replacement of 5 ml of culture supernatant (of a 
total of 8 ml per flask) with fresh medium every 3rd day until day in vitro 
(DIV) 14, and every 2nd day thereafter. For experimentation, replicate 
cultures were prepared by randomizing and aliquoting the free-
floating aggregates of the original cultures. For media replenishment 
in replicate cultures, aliquots of 2.5 ml spent medium were replaced by 
fresh medium. 

Combined treatment with IFN-γ and LPS 

A single treatment with IFN-γ (50 U/ml final concentration) and 
LPS (5 µg/ml final concentration) was applied to investigate the effect of 
an acute inflammatory response. A prolonged inflammatory response 
and the accompanying demyelination were triggered by the repeated 
treatment with IFN-γ (50 U/ml final concentration) and LPS (5 µg/ml 
final concentration). The treatment, initiated at DIV 22, was repeated 
twice, at DIV 24 and DIV 26 (last treatment), each time after media 
replenishment. Stock solutions were prepared, for IFN-γ (Peprotec) 
in phosphate buffered saline (PBS) containing 0.1 % bovine serum 
albumin (pH 8), and for LPS (Sigma) in 0.9% NaCl. 

THC and GW9662 treatments

Stock solutions of (-)-∆9-Tetrahydrocannabinol (THC) at a 
concentration of 1.0 mg/ml ethanol were purchased from Lipomed AG, 
Arlesheim, Switzerland. THC final concentration was chosen according 

to Monnet-Tschudi et al. [34]. THC (1 µM final concentration) was 
given simultaneously with the inflammatory agents IFN-γ and LPS, 
from a 103-fold concentrated stock solution prepared in Ethanol. 
GW9662 (2-Chloro-5-nitro-N-phenylbenzamide) was obtained from 
Tocris bioscience, Lucerna chem. AG., Lucerne, Switzerland. GW9662 
(2 µM final concentration, chosen according to Zurich et al., [35]) was 
applied alone or together with THC 1 hour before the inflammatory 
agents from a 103-fold concentrated stock solution prepared in Ethanol.

Western blot analysis

Cultures were washed twice with PBS at 4°C. Western Blot analysis 
were done according to pervious publications [32, 36]. Aggregates were 
homogenized in lysis buffer (10 mM Tris-HCl ph 7.5, 6M Urea, 0.1% 
SDS, 1/100 Complete protease inhibitor, and 1/100 sodium-ortho-
vanadate). The protein content was measured by the BCA assay. Per 
well, 40 to 60 µg of protein was loaded. Blots were stripped (Re-Blot 
Plus Mild antibody stripping solution; Chemicon) and incubated 
with antibody against β actin (1/30000; Sigma) to demonstrate equal 
loading of protein in each lane. The autoradiograms were scanned 
and processed by image analysis (Quantity One, BioRad). Data 
were acquired in arbitrary densitometric units and transformed to 
percentages of densitometric levels obtained from scans of control 
samples visualized on the same blot. 

Quantitative RT-PCR 

Aggregating brain cell cultures were washed twice with 5 ml of ice-
cold PBS, and the pellet stored at -80°C. The RNeasy kit from Qiagen 
was used to extract total RNA. The reverse transcription (RT) reaction 
was performed using the High capacity cDNA Reverse Transcription 
Kit and protocols from Applied Biosystem (ABI, Foster City, CA, 
USA). Briefly, the RT was run with 2 µg of total RNA in a reaction 
volume of 20 µl. Aliquots of this reaction mixture were used for the 
subsequent PCR reactions. The expression of iNOS was quantified 
using SYBR Green (ABI), whereas the expression of IL-1β, IL-6 and 
TNF-α was quantified using Taqman gene expression assay (ABI) as 
previously published [32,35].

Immunocytochemical and Isolectin B4 stainings

Aggregating brain cell cultures were washed twice with pre-warmed 
PBS, embedded in cryomatrix (Jung, Nussloch, Germany), frozen 
in isopentane cooled with liquid nitrogen, and stored at -80°C. For 
immunocytochemistry, cryosections (10 µm) were fixed for 15 minutes 
in 4% paraformaldehyde dissolved in PBS at room temperature, and 
then washed in PBS. For blockade of non-specific binding, sections 
were first incubated in normal horse serum (1/25 in PBS with 0.1% 
Triton-X100, Jackson) and exposed overnight at 4°C to antibodies 
against MBP (mouse monoclonal, 1/40, Chemicon). Sections were then 
incubated with the horse anti-mouse biotinylated IgG (1/200, Vector) 
and mounted in ProLong Gold antifade reagent (Invitrogen). For 
the staining of microglia by the specific binding of FITC-conjugated 
isolectin B4 of Griffonia simplicifolia (IB4), cryosections were washed 
for 15 minutes in Tris buffer containing 1% Triton X-100 and then 
incubated for 30 minutes in Image-iT FX signal enhancer (Invitrogen). 
Sections were then exposed overnight at 4°C to IB4 (1/500, Sigma). 
Image J software was used to quantify the labeled area of aggregate 
sections. Sections from the central area of aggregates were taken for 
analysis. Threshold of fluorescence was defined and set up in some 
images of the control untreated cultures in order to cover all labeled 
area above background, and was applied to all images of the different 
treatments. Only changes in labelled area are reported here. Results are 
expressed as percentage of untreated control cultures. 
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Statistics

Data are expressed as mean ± standard error of the mean (SEM). 
For western blot analysis, data are expressed as percentages of 
untreated control cultures and each value is the average of 8-9 replicate 
cultures obtained in 3 independent experiments, using cultures of 
different batches. Data were statistically evaluated for significance 
by the Kruskal-Wallis test followed by the Mann-Whitney test using 
StatA software. For quantitative RT-PCR, data are expressed as fold 
changes of untreated control cultures, and each value is the average 
of 6-8 replicate cultures of 3-4 independent experiments. Data were 
also statistically evaluated for significance by the Kruskal-Wallis test 
followed by the Mann-Whitney test. For immunostaining, data are 
expressed as percentages of untreated control cultures, and each value 
is the average of the quantification of 20 aggregate images from one 
experiment. The analysis of 3 independent experiments produced 
similar results. Data were statistically evaluated by one-way ANOVA 
followed by the Tukey post-test.

Results
Aggregating brain cell cultures were treated from DIV 22 to DIV 

26 with the two inflammatory agents, IFN-γ (50 U/ml) and LPS (5 µg/
ml). THC (1 µM) was given simultaneously with the administration 
of the two inflammatory agents. The effects of THC on demyelination 
were assessed by measuring MBP expression and content by 
immunocytochemistry and immunoblotting, respectively. 

Cultures treated with IFN-γ and LPS exhibited strongly decreased 
MBP immunostaining (Figure 1 C vs A, and E) indicating that 
demyelination occurred. THC together with the inflammatory agents 
partially prevented the decreased immunoreactivity for MBP (Figure 1, 
D vs. C, and E). In the absence of the inflammatory stimulation, THC 
did not modify the immunoreactivity for MBP (Figure 1 B vs A). These 
findings were confirmed by western blot analysis for MBP (Figure 
2). Treatment with the demyelinating agents strongly reduced MBP 
content (Figure 2 A and B) and the addition of THC partially prevented 
the decrease in MPB content (Figure 2 A and C). In the absence of the 
inflammatory stimulation, THC did not alter the MBP content (Figure 
2). These observations taken together indicate that THC partially 
prevented the demyelination triggered by the inflammatory agents.

To investigate how THC can protect against demyelination, its 
effects on the inflammatory response induced by IFN-γ and LPS were 
examined. The extent of the inflammatory reactions was evaluated 
taking as criteria IB4 staining, and the expression of i-NOS, TNF-α and 
IL-1β. To investigate the effects of THC on the mRNA expression of 
the inflammatory mediators, THC was applied simultaneously with the 
repeated treatment with IFN-γ and LPS (3X) and also with a single 
treatment with the inflammatory agents. 

The results (Figure 3) show that the combined treatment with the 
two inflammatory agents significantly increased IB4 staining (Figure 
3), indicating microglial activation as previously descibed [37,38]. 
Addition of THC reduced the IB4 staining to the level of untreated 
controls (Figure 3), indicating that THC prevented the activation of 
microglial cells by the pro-inflammatory treatment. In the absence of 
the inflammatory stimulus, THC did not affect IB4 staining (Figure 3).

A single and a repeated application of the inflammatory agents 
strongly upregulated the mRNA expression of i-NOS (Figure 4A), 
TNF-α (Figure 4B), and IL-1β (Figure 4C). I-NOS and TNF-α 
expression, were more upregulated after the repeated treatment 
(Figure 4A and B, black bars vs white bars), whereas IL-1β expression 

was more upregulated after the single treatment (Figure 4C, black bars 
vs white bars). When cultures were treated only once, the addition of 
THC significantly decreased the upregulation of i-NOS and tended 
to reduced TNF-α expression (Figure 4A and B, white bars), whereas 
it did no affect significantly IL-1β increased expression (Figure 4 C, 
white bars). When the treatments were repeated, THC did not decrease 
i-NOS, TNF-α and IL-1β upregulated expression (Figure 4, black bars). 
In the absence of the inflammatory stimulus, THC did not affect i-NOS, 
TNF-α and IL-1β expression (Figure 4). 

To further investigate the modulation of the inflammatory cascade, 
changes in the phosphorylation of p44/42 (Erk1/2) and p38 MAP kinases 
were examined by western blot analysis. The results (Figure 5) show 
that the treatment of cultures with the two inflammatory agents given 
either once or three times significantly increased the phosphorylation 
of p44/42 MAP kinase (Figure 5A, B, D) and of p38 MAP kinase (Figure 
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Figure 1: Effects of THC on MBP immunostaining.
Aggregate cultures remained either untreated (A), or were treated with THC 
(1 µM) (B); IFN-γ (50 U/ml) plus LPS (5 µg/ml) (C); or treated with THC 
simultaneously with the inflammatory agents (D). Cultures were harvested 
48 hours after the last treatment with the inflammatory agents. The MBP 
staining was quantified (E), measuring 20 aggregate sections per treatment 
and expressing the stained area as percent of untreated control cultures. 
The Figure shows representative data from one experiment. Results were 
statistically evaluated for significance by one-way ANOVA test followed by 
the Tukey post-test. (*P<0.05, ***P<0.001, compared with untreated control 
cultures; °°°P<0.001 compared with cultures treated with the inflammatory 
agents). Bar = 100µm.
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5A and F). However, p38 MAP kinase phosphorylation was much more 
increased after a repeated exposure. When the treatment was applied 
only once, this increase in phosphorylation was significantly attenuated 
in presence of THC for both p44/42 MAP kinase (Figure 5A, C, E, 
white bars) and p38 MAP kinase (Figure 5A, G, white bars). When the 
treatment was repeated, THC still decreased the phosphorylation of 
p44/42 MAP kinase (Figure 5A, C, E, black bars), but had no effect on 
the increased phosphorylation of p38 (Figure 5A, G, black bars). THC 
alone did not modify the basal level of phosphorylation of these MAP 
kinases (Figure 5A, B, D).

In order to examine whether an activation of cannabinoid-like 
receptors and in particular of PPAR-γ may be involved in the anti-
inflammatory effect of THC observed in the acute neuroinflammation, 
the irreversible PPAR-γ antagonist GW9662 (2 µM) was applied 
alone or together with THC 1 hour before the inflammatory agents. 

GW9662 applied simultaneously with THC did not block the THC-
induced decrease in i-NOS mRNA expression observed after the single 
application of IFN-γ + LPS. Even, when applied alone, it decreased the 
IFN-γ + LPS-induced upregulation of i-NOS mRNA after the single 
treatment with the inflammatory agents and lost this effect after the 
repeated treatment (Figure 6 A). Similar observations were made for 
TNF-α (not shown). To further investigate the role of PPAR-γ in the 
THC-induced modulation of the inflammatory response, the mRNA 
expression of PPAR-γ was measured. It was found that IFN-γ + LPS 
tended to decrease PPAR-γ mRNA expression and that THC and 
GW9662 applied alone did not modify this response (Figure 6 B). 
When THC and GW9662 were applied together, PPAR-γ mRNA 
expression returned to control level after the acute treatment with the 
inflammatory agents (Figure 6B). No modification of PPAR-γ mRNA 
expression by THC and GW9662 applied alone or together were 
observed after the repeated treatment with the inflammatory agents 
(Figure 6B).

Discussion
In multiple sclerosis, beneficial effect of cannabinoids on 

symptomatic spasms and pain have been evidenced by several 
clinical trials [39- 41]. Whether disability progression can be slowed 
by cannabinoid treatments remained to be demonstrated [41]. 
Experimental studies aim at studying the mechanisms underlying the 
efficacy of cannabinoids treatments. In the present study we showed that 
THC partially protects against INF-γ and LPS-induced demyelination. 
We have then investigated whether this protective effect was mediated 
by a modulation of the neuroinflammatory response. 

As expected, IFN-γ + LPS-induced microglial reactivity was 
downregulated by THC. But THC decreased the mRNA expression 
of i-NOS and TNF-α only after the single treatment with the 
inflammatory agents, but not after the repeated one. Regarding the 
MAP kinase pathways, that are involved in the inflammatory response 
[42], the increased phosphorylation of p44/42 was attenuated by THC 
after both acute and repeated IFN-γ + LPS treatment, whereas p38 
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Figure 2: Effects of THC on the MBP content. 
Panel A shows representative western blots of MBP and β-actin. Panel B shows 
quantification of the MBP content expressed as percentage of untreated control 
cultures (=100%). Panel C shows quantification of the MBP content expressed 
as percentage of cultures treated with the inflammatory agents (=100%). 
Cultures were harvested 48 hours after the last IFN-γ plus LPS treatment. 
Measuring β-actin assessed equal loading of protein. Each value is the mean of 
9 replicate cultures. Results were statistically evaluated for significance by the 
Kruskal-Wallis test followed by the Mann-Whitney test. (***P<0.001, compared 
with untreated control cultures; °P<0.01 compared with cultures treated with 
the inflammatory agents).
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Figure 3: Effects of THC on microglial activation.
Aggregate cultures remained either untreated [Ctrl] or were treated with THC 
(1 µM) [T]; IFN-γ (50 U/ml) plus LPS (5 µg/ml) [I+L]; or treated with THC 
simultaneously with the inflammatory agents [I+L+T]. Cultures were harvested 
48 hours after the last treatment with the inflammatory agents. The IB4-
labelled microglial cells were quantified by measuring 20 aggregate sections 
per treatment and expressing the stained area as percent of untreated control 
cultures. The Figure shows representative data from one experiment. Results 
were statistically evaluated for significance by one-way ANOVA test followed 
by the Tukey post-test. (***P<0.001 compared with untreated control cultures; 
°°°P<0.001 compared with to cultures treated with the inflammatory agents). 
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phosphorylation was decreased only after the single application of 
IFN-γ + LPS. P38 MAP kinase is implicated in the signal transduction 
pathway responsible for the increased expression of i-NOS and TNF-α 
[43,44]. Therefore, the decrease in i-NOS and TNF-α expression 
induced by THC could be related to the decreased activation of p38. 
Although p44/42 signaling plays also a role in i-NOS expression in 
microglia [43-45], it appears that after a repeated treatment with the 
inflammatory agents, the attenuation of p44/42 phosphorylation by 
THC was not sufficient to modulate i-NOS expression. 

The lack of effect of THC on i-NOS and TNF-α expression and 
on p38 activation after the repeated exposure to the inflammatory 
agents could be due to the repeated application of THC leading to an 
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Figure 4: Effects of THC on iNOS (A), TNF-α (B) and IL-1β (C) mRNA 
expression. 
Aggregate cultures remained either untreated [Ctrl] or were treated with THC 
(1 µM) [T]; IFN-γ (50 U/ml) plus LPS (5 µg/ml) [I+L]; or treated with THC 
simultaneously with the inflammatory agents [I+L+T]. These treatments were 
applied one time (1X) or three times (3X). For measuring the mRNA expression, 
cultures were harvested 24 hours after the inflammatory treatments. Values 
are expressed as fold change of untreated control cultures (=1), each value 
being the mean of 6-8 replicate cultures. Results were statistically evaluated 
for significance by the Kruskal-Wallis test followed by the Mann-Whitney test. 
(*P<0.05, **P< 0.01, ***P<0.001 compared with untreated control cultures; 
°°°P< 0.001 compared to cultures treated with the inflammatory agents; t = 
tendancy compared to cultures treated with the inflammatory agents (P = 
0.0742)).
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Figure 5: Effects of THC on p44/42 and p38 phophorylation.
Aggregate cultures remained either untreated [Ctrl] or were treated with THC 
(1 µM) [T]; IFN-γ (50 U/ml) plus LPS (5 µg/ml) [I+L]; or treated with THC 
simultaneously with the inflammatory agents [I+L+T]. These treatments were 
applied one time (1X) or three times (3X). Panel A shows representative 
western blots for phophorylated-p44/42 [P-p44/42], phophorylated-p38 [P-
p38], and actin. Panels B, D, and F show quantification of phophorylated-p44, 
phosphorylated-p42 and p38, respectively, expressed as percentage of 
untreated control cultures (=100%). Panels C, E, and G show quantification 
of phophorylated-p44, p42 and p38, respectively, expressed as percentage of 
cultures treated with the inflammatory agents (=100%). Cultures were harvested 
24 hours after the treatments. Measuring β-actin expression assessed equal 
loading of protein. Each value is the mean of 8 - 9 replicate cultures. Results 
were statistically evaluated for significance by the Kruskal-Wallis test followed 
by the Mann-Whitney test. (*P<0.05, **P< 0.01, ***P<0.001 compared with 
untreated control cultures; °P<0.05, °°P< 0.01 compared with cultures treated 
with the inflammatory agents.
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the repeated application of THC. This effect may be mediated by CB2 
receptors [48] that are more abundant on these cells when activated 
[13-14], and that are probably present in the cultures as assessed by 
measuring the mRNA expression (not shown). However, application of 
the CB2 and CB1 receptor antagonists, AM630 (1 µM) and AM251 (1 
µM), respectively, one hour before the application of IFN- γ + LPS and 
THC did not block the anti-inflammatory effect of THC observed after 
a single application of the anti-inflammatory agents (not shown). But 
the anti-inflammatory effects of THC can also be mediated by CB-like 
receptors, mainly those related to high concentrations of THC (1 µM) 
[15], such as used in this study. While THC at very high concentration 
(5 µM) induced an upregulation of PPAR- γ  mRNA expression (data 
not shown), the concentration used here did nor modify PPAR- γ 
mRNA expression neither in the resting conditions, nor after IFN-γ 
+ LPS treatments. Treatments with the inflammatory agents decreased 
PPAR-γ mRNA expression, as previously described in microglial cells 
and astrocytes [49,50]. To further test the involvement of PPAR-γ in 
the anti-inflammatory effect of THC, we examined whether the non 
reversible antagonist of PPAR-γ, GW9662, could block the THC-
induced decrease of i-NOS expression in the acute inflammatory 
response. GW9662 not only did not block the anti-inflammatory effect 
of THC, but even behaved similarly than THC, it decreased i-NOS and 
TNF-α mRNA expression in case of the single treatment with IFN-γ + 
LPS, and lost this effect in case of the repeated treatment. Paradoxical 
anti-inflammatory effect of GW9662 has been observed in a monocyte 
cell line [51]. The authors discussed these paradoxical results by 
suggesting that GW9662 could also function as a partial agonist for 
PPAR-α, that was reported to be also anti-inflammatory [52,53]; or 
that the effects of GW9662 may be mediated though mechanisms other 
than the canonical pathway of PPAR-γ activation. When the PPAR-γ 
antagonist and THC were applied together, the expression of PPAR-γ 
mRNA returned to control levels in case of the single treatment with 
IFN-γ + LPS, suggesting synergic effects of PPAR-γ antagonist and 
THC.

The differential effects of THC and GW9662 in the acute versus 
the prolonged inflammatory responses triggerred by a single or a 
repeated treatment with IFN-γ + LPS, respectively, could signify that 
the characteristics of neuroinflammation change with time. In line with 
this hypothesis is the paper of Janabi and coworkers [54], that showed 
that acute and prolonged stimulation of microglia and astrocytes with 
IFN-γ, IL-1β and TNF-α caused differential expression of several 
inflammatory mediators, resulting in different activation states. 

In summary, the THC-induced protection against IFN- γ + LPS-
induced demyelination appeared to be due to the anti-inflammatory 
potential of THC. However, the protection against demyelination 
was only partial. This could be related to the temporal changes in the 
anti-inflammatory effect of THC. Indeed, in the acute inflammatory 
response, all the inflammatory markers considered were decreased, 
whereas, when inflammation was more prominent and of longer 
duration, cytokines mRNA expression and p38 phosphorylation were 
no more downregulated by THC. This attenuation in the inflammatory 
potential could be due either to changes in the properties of the 
inflammatory response or to the repeated application of THC. 

The consequences of an anti-inflammatory treatment on a 
demyelinating insult appeared very variable. Previous studies have 
shown that minocycline, an antibiotic known to decrease microglial 
reactivity [55] did not protect against demyelination, but favour 
remyelination [38]. And an agonist of PPAR-β, that showed a clear 
anti-inflammatory effect, did not protect against antibody-mediated 
demyelination [56]. Taken together, these results emphasize the central 

Figure 6: 
A. Effects of THC and of the PPAR-γ antagonist GW9662 on IFN-γ + LPS-

induced mRNA expression of i-NOS 
Aggregate cultures remained either untreated or were treated with THC (1 mM) 
or GW9662 (2 mM). GW9662 and THC were applied 1 hour before IFN-γ (50 
U/ml) plus LPS (5 mg/ml). These treatments were applied once (1x) or three 
times (3x). For measuring the mRNA expression, cultures were harvested 24 
hours after the inflammatory treatments. Values are expressed as fold change 
of untreated control cultures (=1), each value being the mean of 8 replicate 
cultures. Results were statistically evaluated for significance by the Kruskal-
Wallis test followed by the Mann-Whitney test. (*P<0.05, **P< 0.01, ***P<0.001 
compared with untreated control cultures; oooP< 0.001 compared with to 
cultures treated with the inflammatory agents). 
B. Effects of THC on PPAR- γ mRNA expression
Aggregate cultures remained either untreated or were treated with THC (1 mM) 
or GW9662 (2 mM). GW9662 and THC were applied 1 hour before IFN-γ (50 
U/ml) plus LPS (5 mg/ml). These treatments were applied once (1x) or three 
times (3x). For measuring the mRNA expression, cultures were harvested 24 
hours after the inflammatory treatments. Values are expressed as fold change 
of untreated control cultures (=1), each value being the mean of 5 replicate 
cultures. Results were statistically evaluated for significance by the Kruskal-
Wallis test followed by the Mann-Whitney test. (*P<0.05, **P< 0.01, compared 
with untreated control cultures; oP< 0.05 compared to cultures treated with the 
inflammatory agents).

internalization of cannabinoid receptors [46,47]. A single application 
of THC given with the last (third) treatment with the inflammatory 
agents tended to downregulate IL1β mRNA expression (P value 0.09), 
caused a small but not significant decrease of i-NOS mRNA expression, 
whereas TNF- α remained unchanged (data not shown), suggesting that 
internalization might occur. However, microglial activation, induced 
by a repeated treatment with the inflammatory agents, was reduced by 
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role of neuroinflammation in the demyelinating and remyelinating 
processes, but also the difficulty to predict the beneficial effects of an 
anti-inflammatory treatment in therapeutic interventions. 

Beside the ability to decrease neuroinflammation, cannabinoid-
induced immunosuppression may also be associated with a reduction 
of T cells responsiveness or with an increased myeloid progenitor 
trafficking towards the inflammed foci (for review, [57]). For a 
therapeutic application, it remained to be demonstrated whether a 
protective or reparative effect of THC is achieved when applied after 
the demyelinating insult or continuously as a preventive treatment. 
However, long term treatments with relatively high concentrations 
was shown to induce neurotoxic effects [34], limiting a long term 
therapeutic use of THC. 
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