
Research Article Open Access

Volume 4 • Issue 3 • 1000147
J Phys Chem Biophys
ISSN: 2161-0398 JPCB, an open access journal

Open Access Review Article

Bunker, J Phys Chem Biophys 2014, 4:3 
DOI: 10.4172/2161-0398.1000147

Keywords: Gene therapy; Synthetic; Transfection; Transduction;
Electrotransfer

Introduction
Gene therapy holds promise for correcting host pathology through 

manipulation of DNA expression. Gene therapy can involve transfer, 
repair or silencing. Transfer of genetic material enables the expression 
of a particular functional protein within the host. Genetic repair 
attempts to correct a flaw in host DNA, while silencing switches off 
production of a pathogenic protein. There has been particular interest 
in gene transfer for correcting monogenic disorders such as severe 
combined immunodeficiency and Haemophilia B, with a number of 
human trials already performed [1-4]. There is also much interest in 
gene transfer therapy in solid organ transplantation for the induction of 
transplant tolerance through modulation of co-stimulatory pathways, 
manipulation of cytokine expression and apoptosis pathways, 
immunomodulation via enzyme expression, leukocyte migration, and 
transfer of transduced antigen presenting cells and/or lymphocytes [5]. 

Gene Transfer Techniques
The transfer of genetic material can be accomplished in vivo 

through local or systemic inoculation or ex vivo where the target 
of interest is collected and modified outside of the organism before 
return to the host. Transfer of synthetic DNA can be accomplished by 
transduction or transfection. Such methods of transfer include either 
direct injection of DNA into the recipient cells, or utilising methods 
to induce membranes permeabilisation, receptor-mediated uptake or 
endocytosis. Transduction utilises recombinant virus as a vector for gene 
transfer. Entry of these vectors is mediated by cell-surface receptors. 
Concerns regarding the immunogenicity of viral vector systems due to 
activation of memory responses against constituent viral proteins or a 
primary response to neoantigens has spawned the evolution of synthetic 
gene delivery systems which exploit transfection, the transfer of DNA 
via physical, chemical or electrical methods [6,7]. Benefits of non-viral 
methods for DNA transfer include a reduction of risks associated with 
viruses (immune response, insertional mutagenesis) and limitations to 
gene delivery (such as length of the transgene cassette) [8]. 

Physical approaches range from microinjection into individual 
cells or the direct injection of DNA into tissues (i.e. muscle). Generally 
such techniques result in low level, variable expression. Others include 
the use of a ‘gene gun’ which pushes a stream of plasmid-coated gold 
microparticles through the skin or the use of ultrasound to permeate 
cells (sonoporation) [9,10]. 

Chemical methods (i.e. calcium phosphate) have also been 
employed, and are commonly used in the laboratory setting. Isolated 
DNA combined with calcium chloride and potassium phosphate can 
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produce a calcium phosphate DNA precipitate, which will be taken 
up by a fraction of cells after incubation [11]. The main drawbacks 
are low frequency of transduction, reduced cell viability and random 
integration into the host genome.

Electrical methods (electrotransfer) are more well-established. 
Applying an electrical field to cells alters the resting transmembrane 
potential, which can induce permeability though the formation of 
reversible structural membrane changes (electropores) [8]. A large 
number of animal studies have been performed across on a range of 
tissues, with the main application being immunotherapy (summarised 
in [8]). Therapeutic levels of gene expression have been achieved, as 
well the cotransfer of multiple plasmids [12]. Although more efficient 
than chemical or physical methods, the efficiency of electrotransfer is 
still less than that seen with viral vectors.

The choice between transfection strategies compared to transduction 
with a virus will largely depend on the therapeutic goal. For transient 
gene expression or repeat dosing scenarios, synthetic delivery systems 
herald obvious advantages. Conversely, correction of missing protein 
disorders which require long-term, stable gene expression may be better 
served by viral vectors which can lead to integration of the transgene 
with host DNA and more stable constitutive protein expression. 
Synthetic delivery holds potential benefits in term terms of safety, 
low frequency of gene integration, ability to introduce larger portion 
of genes and ease of production [13,14]. Another consideration is the 
efficacy of expression: in general, viral vectors achieve higher efficiency 
of expression than synthetic systems [15,16]. The development of 
artificial viral systems (synthetic viruses) remains a future strategy to 
harness the advantages of viral and synthetic systems.

Synthetic Delivery Systems
The plasmid DNA of interest is susceptible to rapid degradation 

by biological enzymes necessitating that it be packaged for protection 
[17]. Synthetic delivery systems accomplish this using polycationic 
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polymers and/or cationic lipids which may be complexed with nucleic 
acid (polyplex, liploplex or lipopolyplex systems) or lipid encapsidation 
(liposomes) [18]. The use of cationic packaging takes advantage of 
the anionic properties of DNA to form an electrostatic bond between 
the plasmid of interest and the protective coating. The final DNA-
packaging construct usually measures between 100 nanometers to 1 
micrometer [14]. By using an excess of cationic charge in the packaging 
molecules, the chance of leaving uncoated anionic DNA is reduced and 
the final complexes then tend to repulse from one another, minimising 
the change of precipitation [14]. A consequence of using positively 
charged particles as a delivery system is their tendency to interact 
with negatively charged particles. This effect has been demonstrated 
with synthetic vectors binding to extracellular glycosaminoglycans 
and heparin sulphate receptors, altering transfection efficiency and 
distribution [19-21]. 

Targeting Gene Delivery 
An important considering in gene therapy is ensuring that the 

pharmacophore is delivered to an area that maximises its therapeutic 
benefit. This can be especially complex in the living organism due 
to shared receptors between tissues, circulatory anomalies (such as 
the blood-brain barrier) and ability of serum proteins to destabilise 
synthetic vector complexes [14]. In some cases, direct application of the 
vector to the dysfunctional tissue may be required to maximise effect. 
In the case of a cationic liposome complexed to plasmid DNA encoding 
chloramphenicol acetyltransferase, direct injection into murine hepatic 
tumours resulted in higher levels of gene expression than were achieved 
with systemic or portal vein inoculation [22]. Lipoplexes complexed 
to the bcl-2 gene have demonstrated reduced neural apoptosis after 
transient cerebral ischaemia in an animal model, circumventing the 
blood-brain barrier by utilising direct intra-thecal injection [23]. 
Furthermore, the cystic fibrosis transmembrane regulator gene has 
been successfully packaged with both cationic liposomes and polymers 
and safely delivered intranasally to cystic fibrosis directly targeting 
airway mucosa [24-26]. 

Other targeting techniques include altering the charge of the 
synthetic vector-DNA plasmid particle: cationic liposomes have 
been shown to preferentially distribute to the lung after systemic 
administration, an effect which is lost which decreasing positivity [27]. 
Size also plays a role as large molecules may be unable to extravasate 
from the circulation to reach target cells within organ parenchyma. 
Additionally, constitutive expression of specific ligands on targets 
cells can be manipulated to design advantage, for example the use of 
dextran-spermine polycation complexing with DNA to target the liver 
by preferential binding to galactose receptors on hepatic parenchyma 
[28].

Conclusion
The ideal synthetic vector can safety and reliably target the tissue 

of interest without systemic distribution or premature degradation, be 
taken up into the cell, and the synthetic components separated allowing 
the DNA plasmid to be transported to the nucleus and transfect the 
target cell. Efficiency of transfection using non-viral strategies remains 
a challenge which may be addressed by enhancing biodistribution 
biases and a more comprehensive understanding of endogenous ligand 
targets.
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