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used for tire manufacturing [7]. Despite its complex composition, 
tire rubber can be biodegraded [2]. Biodegradation of polymeric 
materials includes: biodeterioration (initial changes in the material 
by microorganisms growing on its surface), depolymerization 
(enzymatic breakdown of the polymer into oligomers, dimers, and 
monomers), and assimilation (entry of compounds into the cell for 
metabolization) [8]. Microorganisms such as fungi and bacteria can 
degrade natural and synthetic rubber and use it as a carbon source 
[9]. Some fungi, particularly white and brown rot fungi such as 
Ceriporiopsis subvermispora, are capable of devulcanizing rubber [10], a 
process that involves the desulfurization of the material [11], meaning 
the breaking of the sulfur-sulfur and sulfur-carbon bonds [4] via 
enzymes [5]. This biochemical process can promote the degradation 
of rubber materials. However, many microorganisms are sensitive to 
additives present in this substrate [12], such as zinc salts and oxides 
[2], heavy metals such as Mn, Fe, Co, Ni, Cu , Zn, Cd, and Pb [13] 
or polycyclic aromatic hydrocarbons (PAHs) [14]. These additives 
can prevent or limit the growth of organisms and inhibit their 
ability to biodegrade [7]. Fungal species such as Recinicium bicolor 
can degrade aromatic compounds found in rubber and have been 
successfully used to detoxify the material [2,15]. The ability of these 
microorganisms to degrade polymers depends on the presence of 
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INTRODUCTION

Billions of waste tires are discarded in landfills throughout the world 
each year, creating risks to human health and the environment 
[1]. While the landfills for the safe disposal of rubber waste reach 
their limit, their indiscriminate disposal causes water and soil 
contamination. Likewise, the burning of rubber waste generates a 
large amount of heat and smoke that influence global warming and 
air pollution [2].

The environmental risks associated with waste tire rubber and its 
disposal are due both to its complex three-dimensional structure, 
as well as to its composition and chemical additives that preclude 
their direct recycling [3]; in addition to being hard to biodegrade [2]. 
The aforementioned factors contribute to the accumulation of the 
material.

Tires, usually, are made by mixing natural and synthetic rubber [4]. 
Different compounds are added to this mixture to increase strength 
and abrasion resistance [5]; additionally, this mixture is vulcanized 
through a thermochemical process that involves complex reactions 
between rubber polymers, sulfur, and additives [4-6]. Although there 
are other vulcanization methods, the thermochemical is the most 
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extracellular enzymes [16]. Nayanashree and Thippeswamy [17] report 
that the enzymes laccase and manganese peroxidase are responsible 
for the degradation of natural rubber. Both enzymes are frequently 
found in the Fungi kingdom [18,19]. According to Shah et al. [1], De 
Vries [20] was a pioneer in examining the possible decomposition of 
rubber by fungi. A decade later, Kalinenko [21] reported isolates of 
the genera Aspergillus and Penicillium as rubber degraders. Another 
species, Paecilomyces variotii strain SFA-25, was reported by Zeb [22] as 
a degrader of vulcanized rubber.

Thus, there are reports of fungi capable of biodegrading tire 
rubber and carrying out the two previous processes that promote 
degradation: detoxification and devulcanization. This suggests that 
fungi have potential in tire rubber degradation, at different stages 
and through different processes. Taking into account what was 
established above, the potential to degrade tire rubber of filamentous 
fungi isolated from samples of deteriorated tires on the Bogotá D.C-
Silvania-Cundinamarca Road, Colombia, was evaluated. 

MATERIALS AND METHODS

Sampling place

Five sampling sites were selected on the Bogotá, D.C-Silvania road, 
and department of Cundinamarca, Colombia. The places were 
selected considering the presence of at least three abandoned tires 
with evident deterioration (Figure 1A). Three tires were selected 
from each site and three pieces were removed from each using a 
sharp knife disinfected with 5% (v/v) hypochlorite. Additionally, 
with a garden shovel (disinfected with 5% v/v hypochlorite), a 40 g 
sample was taken from the soil in contact with the tires (both types 
of samples were stored in Ziploc® resealable bags). A total of 45 
pieces of tires and 15 soil samples were analyzed in the Laboratory 
of Environmental and Soil Microbiology of the Pontifical Xavierian 
University, Bogota campus. 

The sampling sites were: Abandoned Gallera, municipality of 
Soacha, Cundinamarca (N 04°32.492' W 074°15.041'). Outskirts of 
Bogotá, Alto de Rosas (N 04°32.643’ W 074°17.174’). Montallantas, 
route to Silvania, Cundinamarca (N 04°27.607’ W 074°23.086’). 
Brio “El Vergel” service station, route to Silvania, Cundinamarca 
(N 04°26.935’ W 074°22.754’); Montallantas, Azafranal, Silvania, 
Cundinamarca (N 04°25.086' W 074°23.338' (Figures 1A and 1B).

Isolation of fungal morphotypes

For the isolation of fungi, pieces of tires in Figure 2A of approximately 
12 cm2 were placed in humid chambers, at room temperature 
(approx. 14°C), for four weeks. Then, four 1 cm2 pieces were cut 
from each sample and inoculated (two repetitions per sample) on 
Petri dishes with potato dextrose agar (PDA) (glucose 15 g L-1, agar 
1.5% m/v of, potato infusion 200 mL L-1 and chloramphenicol 
(clo), 50 mg L-1) (Figure 2A) and on rose bengal agar (OXOID, Ref. 
CM1149), incubating for 10 days at (30 ± 1) °C. For the soil samples, 
serial 10 base dilutions were made in NaCl 0.85% (m/v) up to 10-5 
and the 10-3 and 10-5 dilutions were inoculated on PDA+ clo agar (two 
repetitions per sample).

On the other hand, 50 ml of minimum salt broth (K2HPO4 8g L-1, 
KH2PO4 1g L-1, (NH4)2SO4 0.5g L-1, MgSO4 × 7H2O 0.2g L-1, NaCl 
0.1 g L-1, Ca(NO

3
)2 0.1 g L-1, CaCl

2
 × 2H

2
O 20 mg L-1, FeSO

4
 × 

7H2O 20 mg L-1, Na2MoO4 × H2O 0.5 mg L-1, MnSO4 0.5 mg L-1) 
[23] supplemented with 0.1% (m/v) glucose, were placed in a 100 mL 
Erlenmeyer flask and 4 mL of the 10-3 dilution of each soil sample 
were added ( two repetitions per dilution, n=15). Subsequently, in 
an analytical balance (ScoutPro OHAUS), we weighed (0.25 ± 0.01) 
g of tire pieces that were sterilized in an autoclave and added them, 

Figure 1A: Deteriorated tires with fungal growth and soil.

Figure 2A: Tire rubber fragment with fungal growth (Black line=1 cm).

Figure 1B: Deteriorated tires with fungal growth and soil, collected 
on the Bogotá, D.C- Silvania, Cundinamarca route.
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as bait, to the broths. They were incubated in a New Brunswick ™ 
Innova 44 orbital rotator at 120 rpm, at (25.0 ± 0.1) °C for two weeks 
(adapted from Tsuchii and Tokiwa [24]). After the incubation time, 
the pieces were gently washed in distilled water, and they were used 
as an inoculum in PDA+ clo media. 

The greatest possible number of fungal morphotypes was isolated by 
central puncture technique in PDA+ clo, from the growth obtained 
in the 210-culture media (180 from the humid chamber experiment, 
and 30 from the orbital rotator experiment). On the other hand, 
the most representative morphotypes (those that had a greater radial 
growth or that appeared more frequently) were isolated from the 
60-culture media from the serial dilutions of soil samples (Figures 
2A and 2B).

Selection of isolated morphotypes and measurement of 
growth at different concentrations of ground tire rubber 
(GTR)

The morphotypes were grouped according to their sampling location 
and their morphology. The most representative morphotypes of 
each group were selected, eliminating similar ones. The growth of 
the selected fungi was tested in GTR agar (rubber particles did not 
exceed the (5 ± 1) mm). In order to prepare the TR medium, Radha 
agar was prepared (CuSO

4
 1.5 mM L-1, KH

2
PO

4
 2g L-1, NH

4
Cl 0.05 

g L-1, MgSO
4
 × H

2
O 0.5 g L-1, CaCl

2
 × 2H

2
O 0.1g L-1, 10 mL L-1 of 

elements solution trace (MnSO
4
 0.5 g L-1, FeSO

4
 × 7H

2
O 0.1g L-1, 

ZnSO
4
 × 7H

2
O 0.1gL-1)) [25] with 0.6% (m/v) GTR, 0.5% (m/v) 

glucose and 2% (m/v) agar. In duplicate, the media were inoculated 
with a 0.7 cm diameter disk of PDA+ clo medium with the mycelial 
growth of each morphotype. The media were incubated at (30 ± 1) 
°C (VELP™ Scientifica FOC 225I) for two weeks, recording their 
radial growth every five days.

From the morphotypes that grew in GTR agar at 0.6% (m/v), agar 
discs with fungal mycelium were taken and the previous procedure 
was followed, inoculating them in GTR agar at 1.5%, 15% and 
45% (m/v) (Figure 2B). The morphotypes that grew in the highest 
concentration of GTR agar were inoculated in Petri dishes with 7 g 
of sterile GTR and moistened with 7 mL of Radha medium (100% 
GTR medium). The identification of the morphotypes of interest 

was carried out through macroscopic and microscopic description, 
using lactophenol blue staining and Barnett and Hunter taxonomic 
keys [26].

Evaluation of the degrading potential of the selected 
morphotypes

100 mL Erlenmeyer flasks were filled with (200.00 ± 0.01) mg of 
GTR, weighed on a Mettler™ Toledo xp26p balance, with glucose 
0.5% (m/v) and 25 mL of Radha broth, sterilized in an autoclave 
and inoculated with a 0.7 cm disc of each morphotype selected and 
previously grown on 0.6% (m/v) GTR agar (two repetitions per 
morphotype) (adapted from Tsuchii et al. [27]). The broth without 
inoculum was used as a negative control. Cultures were kept for 
eight weeks [17] under constant agitation, in an Innova™ 44 orbital 
rotator at 110 rpm and at (30.0 ± 0.1) °C [28]. After incubation 
(Figure 2C), the GTR was separated from the Radhamedium, using 
a coffee filter (Stilocafé #8). The filtered medium was collected in 50 
mL Falcon™ tubes and its pH was determined in an Okaton™ pH 
meter. To separate the biomass from the GTR, the solid particles 
filtered were placed in 100 mL Erlenmeyer flasks with 20 mL of 
sterile distilled water. Then, the flasks were subjected to agitation 
in a Velp Scientifica™ ZX Classic vortex at 3000 rpm for 20 
seconds. The polymer was centrifuged at 4000 rpm for 10 minutes 
in a PowerSpin™ CENTRIFUGE UNICO, the supernatant (water, 
mycelium and some tire particles) was discarded and the precipitate 
was sterilized to eliminate traces of fungal cells. Then, the GTR was 
dried for 36 hours in a Memmert™ UF55 oven at (45.0 ± 0.1)°C.

Each sample was analyzed by Fourier Transform Infrared 
Spectrometry (FTIR), in a Shimadzu™ MIRacle 10, coupled with 
an ATR (Attenuated Total Reflection) cell. The results of the 
treatments were compared with those of the control. Additionally, 
the samples were observed by scanning electron microscopy (SEM), 
in a Jeol™ JSM 6490LV, using a voltage of 10 kV and obtaining 
the signals of the secondary electron detector (SEs). Images were 
obtained at magnifications between 450 and 5000X. Before 
observation, the slides were plated with gold in a Denton™ Vacuum 
Desk IV metallizer [29]. Tire rubber samples in which the growth 
of microorganisms was evident were treated with Calcofluor White 
[30] and observed with an Olympus™ FV1000 confocal microscope 
(Figures 2C and 2D).

Figure 2B: Fungal growth from a fragment of tire rubber inoculated 
on PDA. 

Figure 2C: Fungal growth on GTR agar. D. Fungal growth in 
Radha+GTR broth.
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for all the morphotypes evaluated. The morphotype that obtained 
the highest growth and productivity values in all concentrations was 
Trichoderma sp.4.

The morphotypes whose values were statistically significant for both 
response variables were phenotypically identified as Trichoderma 
sp., Trichoderma sp. and Aspergillus sp., isolated from sampling site 
#2; Trichoderma sp. 3 and Curvularia sp. isolated from sampling site 
#3; Curvularia sp. and Mucor sp. from sampling site #4 and Mucor 
sp., Trichoderma sp. 4 along with an unidentified isolate, isolated at 
sampling site #5. For sampling site #1, fungi were not selected since 
the isolates did not meet the selection criteria. Some of the isolated 
fungi are shown in Figures 3A-3F.

RESULTS

Selection of morphotypes and growth measurement at 
different concentrations of GTR

Approximately 300 morphotypes were isolated from the collected 
soil and deteriorated tire samples, whose number decreased after 
the selection processes at different concentrations of GTR agar. The 
concentration from which more morphotypes were isolated was 
0.6 m/v of GTR (Table 1). It is important to highlight that all the 
morphotypes that grew at a concentration of 100% GTR medium, 
were obtained from isolations made from the deteriorated tire pieces 
that were incubated in a humid chamber.
Table 1: Number of isolated morphotypes at different GTR agar 
concentration.

Concentration % (w/v) Number of isolated morphotypes

0.6 33

1.5 32

15 30

45 25

100 21

Radial growth of the morphotypes that grew in the 100% GTR 
medium was evaluated. 17 out of 21 morphotypes were analyzed 
(growth in multiple satellite colonies was not measured). Two 
factorial ANOVAs were performed (Design-Expert® version 9 
software) whose independent categorical variables were GTR 
concentration (0.6, 1.5, 15, 45, and 100%) and morphotype (17 
analyzed) for both; one used radial growth as a response variable 
(mm) and the other used the productivity (defined as maximum 
growth in mm/day in which it was evidenced). The F-statistic for the 
model was 8.2 (p-value<0.0001), for the concentration variable the 
value was 19.99 (p-value<0.0001) and for the morphotype variable, 
5.25 (p value<0.0001). The model had a R2 of 0.7193, indicating the 
interdependence between the variables.

On the other hand, productivity was used as a response variable as it 
includes time as a factor in the analysis. The F-statistic for the model 
was 7.32 (p-value<0.0001), for the concentration variable the value 
was 17.19 (p value<0.0001) and for the morphotype variable, 4.85 
(p-value<0.0001). The model had a R2 of 0.6957, indicating the 
interdependence between the variables.

In both statistical analyses, the best results for the growth and 
productivity variables occurred at a concentration of 15% (m/v), 

Figure 2D: Fungal growth in Radha+GTR broth.

Figure 3A: Microscopic characteristics of some of the isolates obtained 
from Radha+CNM liquid medium, observed under a light microscope, 
with lactophenol blue staining, 100X (Trichoderma sp).

Figure 3B: Microscopic characteristics of some of the isolates obtained 
from Radha+CNM liquid medium, observed under a light microscope, 
with lactophenol blue staining, 100X (Curvularia sp.).

Figure 3C: Microscopic characteristics of some of the isolates obtained 
from Radha+CNM liquid medium, observed under a light microscope, 
with lactophenol blue staining, 100X (Aspergillus sp).
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Evaluation of the degrading potential of the selected 
morphotypes

The evaluation of the degrading potential of the selected morphotypes 
was carried out through variables such as radial growth, acidification 
of the culture medium, evaluation of functional chemical groups by 
FTIR and confocal laser scanning microscopy.

Regarding the pH values obtained in the Radha medium with the 
GTR experiment, although all isolates generated a decrease in pH, 

Figure 3D: Microscopic characteristics of some of the isolates 
obtained from Radha+CNM liquid medium, observed under a light 
microscope, with lactophenol blue staining, 100X (Mucor sp).

Figure 3E: Microscopic characteristics of some of the isolates obtained 
from Radha+CNM liquid medium, observed under a light microscope, 
with lactophenol blue staining, 100X (Mucor sp).

Figure 3F: Microscopic characteristics of some of the isolates obtained 
from Radha+CNM liquid medium (Curvularia sp.).

Curvularia sp.1 (pH=2.38 ± 0.01), Curvularia sp. 2 (pH=3.00 ± 0.01), 
Mucor sp. 1 (pH=3.15 ± 0.01) and Aspergillus sp.1 (pH=2.43 ± 0.01), 
were the ones that generated greater acidification of the medium 
compared to the control (pH of the culture medium without 
inoculum=4.20 ± 0.01) (Table 2).

Curvularia sp. 2 was able to tolerate concentrations of up to 100% 
GTR medium, although it did not show significant growth compared 
to the other morphotypes evaluated. On the other hand, Curvularia 
sp. 1 grew, albeit with limited growth, up to a concentration of 45% 
GTR (m/v) (Table 2). Aspergillus sp. 1 also grew at all concentrations, 
however, due to its growth in numerous satellite colonies at 0.6, 1.5, 
15 and 45% (m/v), its diameter could not be measured and was not 
statistically analyzed. At the 100% GTR medium, the growth was 
reduced (Table 2).
Table 2: Selection criteria for the species identified for FTIR-ATR 
analysis.

Identified species
Maximum radial growth at the 
highest concentration w/v

pH value/(liquid 
medium)

Trichoderma sp.1 (9.0 ± 0.1) cm [100%] 3.77 ± 0.01

Trichoderma sp.2 (9.0 ± 0.1) cm [100%] 3.65 ± 0.01

Trichoderma sp.3 (9.0 ± 0.1) cm [100%] 3.92 ± 0.01

Mucor sp.1 (8.4 ± 0.1) cm [100%] 3.64 ± 0.01

Unidentified (9.0 ± 0.1) cm [100%] 4.05 ± 0.01

Trichoderma sp.4 (9.0 ± 0.1) cm [100%] 3.68 ± 0.01

Aspergillus sp.1 (1.8 ± 0.1) cm [100%] 2.43 ± 0.01

Curvularia sp.1 (2.3 ± 0.1) cm [45%] 2.38 ± 0.01

Curvularia sp.2 (4.4 ± 0.1) cm [100%] 3.00 ± 0.01

Mucor sp. 2 (5.3 ± 0.1) cm [0.6%] 3.15 ± 0.01

Mucor sp. 1 grew up to 8.4 cm at a concentration of 100% (m/v) 
while Mucor sp. 2 did not grow at concentrations above 0.6% 
(m/v). Finally, all isolates of Trichoderma spp. and the unidentified 
morphotype grew at all concentrations of GTR (Table 2).

Regarding the FTIR-ATR analyses, Figure 4A shows the spectra of 
the control sample (tire without biological treatment black line) and 
after exposure to fungi (red line). Figure 4A exhibits the unidentified 
morphotype, while Figures 4B and 4C show Trichoderma sp. 2 and 
sp. 3, respectively. Bands observed above 3400 cm-1 correspond to a 
signal of OH bonds [31]. A change in this signal between 600 and 
1000 cm-1 is displayed, corresponding to the stretching of the C-O 
bond.

Figure 4A: FTIR of ground tire rubber from some samples obtained 
from the Radha+CNM medium after fungal treatment. (unidentified  
morphotype). Note: (        )  Contro, (        ) IM14.
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DISCUSSION 

The results obtained show the growth of different morphotypes of 
filamentous fungi on GTR agar at different concentrations. According 
to Lucas et al. [8], the growth of microorganisms in a "polymer agar" 
can indicate its consumption by the inoculated species. It could be 
that some morphotypes used their mycelial reservoirs as a carbon 
source instead of the polymer to grow. However, 90% of the isolated 
morphotypes did not grow at the lowest concentration of GTR agar; 
and only 21 morphotypes grew on 100% GTR. In addition, the 
interdependence between the concentration and growth variables 
was statistically demonstrated, which suggests the use of tire rubber 
as a source of carbon.

The growth of numerous morphotypes was inhibited by the presence 
GTR, even at minimal concentrations (0.6% m/v) and increasing 
GTR concentration reduced the growth of several morphotypes 
(Table 1). Thus, we will mention some possibilities on how the 
identified species were able to grow in this medium, despite the 
toxicity of the material.

Zinc salts and oxides are among the compounds that contribute the 
most to tire toxicity [2]. Fomina et al. [32] concluded that acidolysis 
(protonation) is the main mechanism of zinc dissolution. It is also 
known that zinc oxide can be solubilized by organic acids [33]. 
Although toxic in high concentrations, Zinc is an essential metal for 
the growth of fungi [34], so it might be assimilated and used by the 
identified organisms. 

On the other hand, proton and acid production in fungi is complex 
[35]. It is known that a carbon source is needed to produce these 
metabolites [36]. As stated above, metal mobilization can occur 
by acidification and ligand-promoted metal complex formation. 
These processes include the production of primary and secondary 
metabolites with chelating properties, such as organic, amino and 
phenolic acids [32].

The increase in growth of the morphotypes evaluated in GTR agar 
was maintained up to a concentration of 15% (m/v). This could be 
due to a balance between toxic compounds that inhibit growth and 
the carbon source. It is likely that by increasing the concentration 
of GTR to 45 (m/v) and 100% by mass, the toxic compounds limit 
fungal growth. Contrastingly, it is possible that with concentrations 
lower than 15% (m/v) the carbon source was not enough to support 
greater growth of the morphotypes.

The 0.6% and 1.5% (m/v) GTR media had only up to 2% of carbon 
source, assuming GTR as carbon and adding 0.5% (m/v) glucose. 
Basu et al. [37] state that, for good growth, fungi require a high 
carbon source; For example, potato dextrose agar (PDA), Czapek 
Dox agar (CzA), or oatmeal agar (OA) media contain approximately 
2.4%, 3%, and 6%, respectively, of carbon source depending on 
the manufacturer and its formulation. These percentages do not 
differ from the one estimated for the concentrations of GTR agar. 
Nevertheless, due to the recalcitrant nature and low solubility of this 
polymer, the availability and access of the carbon source could be 
compromised.

The formation of a biofilm on the polymer surface is the first 
step of biodegradation [38,39] (Figure 2C). Fungi can degrade 
a damaged or rough surface more easily than smooth surfaces 
because the propagules are more likely retained on the surface [40]. 
Rough or cracked surfaces concentrate nutrients and moisture, 

Figure 5: Tire rubber samples with fungal growth that were treated 
with Calcofluor White and observed with laser scanning confocal 
microscopy. 

Figure 6: SEM images of a sample of ground tire rubber with the 
mycelial growth of Mucor sp. 1, at 500X (A) and 2000X (B).

Finally, the growth of fungi on the tire samples was observed using 
confocal microscopy and SEM. Figures 5 and 6 show examples of 
mycelial adhesion to the substrate. 

Figure 4B: Signals in the range 3000 cm-1–3500 cm-1 and over 1000 
cm-1 and 1050 cm-1. Note: (        )  Contro, (        ) IM14.

Figure 4C: Signals in the range 3000 cm-1–3500 cm-1 and over 1000 
cm-1 and 1050 cm-1 corresponding to OH groups and extensions of the 
C-O-H bond, respectively. Note: (        )  Contro, (        ) M4.
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possible that the genera identified as Trichoderma sp. and Mucor sp.1 
effectively grew in GTR agar at different concentrations, due to their 
tolerance to these compounds. Hence, their growing capacity may be 
related to the ability to co-metabolize PAHs.

Most fungi generated a decrease in the pH of the medium, compared 
to the control. This indicates the production of organic acids and the 
use of the substrate. It may also signify the ability to solubilize and, 
possibly, assimilate toxic metals present in tires [32]. Regardless, not 
all morphotypes able to acidify their medium managed to colonize 
GTR agar at a concentration of 100% (m/v). This may happen 
due to a lack of the enzymatic machinery needed to depolymerize 
the carbon from the GTR, which would be necessary to support 
fungal growth. Another important consideration is that at this 
concentration, toxic compounds such as PAHs may be high enough 
to limit growth. This statement is more likely since the morphotypes 
showed better growth a GTR concentration of 15% (m/v).

The degradation of GTR could be verified with FTIR-ATR, a method 
that allows non-destructive in situ analysis of surfaces covered by 
microbial biofilms [39]. Bands are observed above 3400 cm-1, a signal 
corresponding to OH bonds [31] and a change in the signal between 
600 and 1000 cm-1 corresponding to stretching of the C-O bond, 
which suggests oxidation of the GTR by the fungi studied. Rose 
et al. [58], mention the presence of aldehyde and ketone groups as 
products of the oxidative degradation of cis-1,4-isoprene, the main 
component of rubber [59,60].

CONCLUSION

Finally, several morphotypes with rubber tire degradation potential 
were species of Trichoderma. This genus of saprophytes, with minimal 
nutritional requirements and fast growth, produces a wide variety 
of secondary metabolites. As mentioned above, these metabolites 
may promote the solubilization of metals by chelating them and 
acidifying the medium. Transformation and even degradation of 
other components that, like tires, are potentially dangerous and 
recalcitrant have been reported for this genus, which is considered a 
hyperproducer of degradative enzymes.
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