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of immune checkpoint inhibitors for patients with advanced 
MSI colorectal cancer has been noted and recent prospective 
clinical trials have demonstrated favorable response rates of 28-
52% to PD-1 inhibitor therapies [2-4]. Thus, testing for MSI is 
recommended for all patients with colorectal cancer [5,6]. A 
pentaplex Polymerase Chain Reaction (PCR) assay has been 
used as the gold standard for MSI testing. Additionally, an 
Immunohistochemistry (IHC) panel targeting MMR proteins 
serves as a complementary diagnostic test to identify individual 
MMR gene mutations. Recently, there has been widespread 
adoption of MSI testing through Next Generation Sequencing 
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INTRODUCTION

Microsatellite Instability (MSI) is a change in microsatellite length 
(repetitive noncoding DNA sequences) caused by a defective 
DNA Mismatch Repair (MMR) during DNA replication that is 
considered a biologically distinct molecular subtype of various 
cancers [1]. MSI is observed in 12-15% of all colorectal cancers. 
Stage II or III MSI-unstable colorectal cancer carries diagnostic, 
prognostic or therapeutic implications, being associated with 
a poor response to adjuvant chemotherapy but exhibiting a 
favorable stage-adjusted prognosis. Moreover, the effectiveness 
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Methodology: Using a total of 931 colorectal cancer Whole Slide Images (WSIs), we developed and verified a deep 
learning algorithm and analyzed the WSI-level MSI probability and clinicopathologic variables. 

Results: In both internal and external cohorts, our deep learning model achieved an Area Under the Receiver 
Operating Curve (AUROC) of 0.901 and 0.908, respectively. The presence of a mucinous or a signet ring cell 
carcinoma component enhanced the model’s ability to predict MSI (HR=19.73, P=0.026). Conversely, tumors 
subjected to neoadjuvant chemoradiation therapy (HR=0.03, P=0.002) and those with metastasis (HR=0.01, 
P=0.016) demonstrated an increased probability of being associated with Microsatellite Stability (MSS). 

Conclusion: To ensure the clinical applicability of the model, it is imperative to meticulously validate deep learning-
based approaches for MSI prediction, accounting for diverse practical clinicopathologic backgrounds that may 
impact the model’s performance.
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retrospectively obtained 639 resected colorectal cancer cases from 
Asan Medical Center (2009-2016). Pentaplex PCR was performed, 
excluding cases with insufficient material or quality. These cases 
were randomly divided into training (n=351; 231 with MSS, 120 
with MSI), validation (n=90; 59 with MSS, 31 with MSI) and 
internal test sets (n=198; 119 with MSS, 79 with MSI).

Figure 2: Flowchart for the internal and external cohorts. Note: CRC-
TEST: Original Internal Test Set; CRC-NCM: A separate cohort 
excluding the 44 cases of neoadjuvant chemoradiation therapy or 
metastatic colorectal cancer from the CRC-TEST; CRC-C: A cohort 
including only cases involving neoadjuvant chemoradiation therapy 
and CRC-M: A cohort including only cases of metastatic colorectal 
cancer in non-colorectal tissue samples. CRC: Colorectal Cancer; 
TCGA: The Cancer Genome Atlas.

The Colorectal Cancer (CRC)-Test set (n=198) included 26 
rectal cancer cases with neoadjuvant chemoradiation therapy 
and 18 metastatic colorectal cancer cases. No such cases were 
included in the training and validation sets. Our evaluation of 
the model’s performance and clinicopathologic variables using 
the CRC-TEST set revealed significant impacts from neoadjuvant 
chemoradiation therapy and metastatic colorectal cancer. To 
validate these findings, we performed detailed subgroup analyses 
with additional cases based on neoadjuvant therapy or metastasis.

To further validate, we created the CRC-NCM set (n=154, 
excluding 44 cases with neoadjuvant therapy or metastasis 
from the CRC-TEST set). Additionally, we collected 55 cases 
with neoadjuvant chemoradiation therapy (CRC-C, n=52) and 
metastatic colorectal cancer in non-colorectal tissue (CRC-M, 
n=47), ensuring no overlap between these sets.

For external validation, we utilized two external cohorts: an 
external test set from Gangnam Severance Hospital (n=196) and 
The Cancer Genome Atlas (TCGA) dataset (n=95). Both cohorts 
had digital H&E slide images from Formalin-Fixed Paraffin-
Embedded (FFPE) tissue of primary resected colorectal cancer 
specimens, with a practical MSI to MSS ratio of 1:9. The external 
test set had no cases involving neoadjuvant chemoradiation 
therapy or metastatic colorectal cancer.

All samples in the internal and external cohorts were fully 
anonymized, with MSI-Polymerase Chain Reaction (PCR) 
serving as the ground truth following standard protocols. The 
distribution of microsatellite status, based on MSI-PCR results 
in each dataset is outlined. For additional analysis, we utilized 
alternative ground truth labels through MMR-IHC or targeted 
NGS with detailed methods.

Preparation and model development

One representative FFPE and H&E-stained tumor slide from 
each case was selected by manual review that was blinded to 
clinical information and microsatellite status. The slides were 
scanned at 20x magnification (0.5 μm/pixel) with an Aperio AT2 

(NGS). These microsatellite assays are presenting remarkable 
sensitivities of up to 100% for both PCR and NGS and up to 94% 
for Mismatch Repair Protein Immunohistochemistry (MMR 
IHC) [1]. However, these methods still have limitations in terms 
of time, cost, tissue consumption and can often be laborious.

Recently, a deep learning technique for digital images has 
been introduced and has shown good performance in image 
classification. Furthermore, research on deep learning-based 
digital pathologic image classification has progressed to a level 
where it can be applied for clinical diagnosis [7,8]. Multiple 
studies have developed deep learning-based classifiers for MSI 
status in colorectal cancer using Hematoxylin and Eosin (H&E)-
stained WSIs. These classifiers have demonstrated favorable 
performance in a large validation cohort, surpassing the previous 
accuracy achieved through histology-based assessments by 
pathologists [7-10]. Computer-aided image analysis models can 
save time and money when used in actual assays, thereby reducing 
human labor. However, careful consideration is necessary in the 
clinical application of deep learning models because various 
clinical conditions can affect the histological features and the 
model’s performances. Therefore, the deep learning models used 
in clinical practice should be validated carefully under diverse 
practical clinic-pathologic backgrounds that may influence their 
performance [11]. 

In this study, we devised a deep learning framework for MSI 
prediction in colorectal cancer from H&E-stained images, 
incorporating automated tumor detection and MSI patch-level 
prediction (Figure 1). Using a detailed subgroup analysis, we 
aimed to investigate the relationship between various clinic-
pathologic factors and the model’s performance.

Figure 1: Workflow for automated tumor detection and prediction 
of microsatellite instability. (A) Patch-based pre-processing for colour 
normalization and augmentation to alleviate variation in H&E 
staining of WSIs; (B) The automated tumor detector was trained 
and used as the first step in the pipeline that highlighted the tumor 
area per WSI and subsequently tiled them into colour-normalized 
and augmented patch images. Another network was trained to 
extract patch image features and obtain spatial feature maps that 
were inputted to predict the final WSI-level MSI prediction. Note: 
WSI: Whole-Slide Image; MSI: Microsatellite Instability; MSS: 
Microsatellite Stable.

 

MATERIALS AND METHODS

Patient cohorts and dataset partition

In our intra-cohort experiments, we employed a two-step cohort 
collection process, approved by the Institutional Review Board 
(IRB) of Asan Medical Center under waiver of patient informed 
consent (Approval No. 2019-1192) (Figure 2). Initially, we 

276



3J Clin Chem Lab Med, Vol.6 Iss.4 No:1000

Kim M, et al. OPEN ACCESS Freely available online

(AUPRC). The Chi-square test, Fisher’s exact test and univariate 
and multivariate logistic regression analyses were performed to 
evaluate the relationship between the predicted microsatellite 
status and clinicopathological characteristics. All statistical 
analyses were performed using SPSS software package version 
21.0.0 (SPSS Statistics software, IBM Corp, NY, USA) and R 
version 4.0.0 (R Foundation for Statistical Computing, Vienna, 
Austria). A P-value < 0.05 was considered statistically significant.

RESULTS

Performance for tumor segmentation and microsatellite 
instability prediction 

Performance of MSI prediction was evaluated in the subcategorized 
datasets based on neoadjuvant chemoradiation therapy or 
metastasis (Figure 2). The tumor area was automatically detected 
with a mean Dice value of 0.696 and a mean Intersection over 
Union (IoU) value of 0.741 for the CRC-TEST set and a mean 
Dice value of 0.674 and a mean IoU value of 0.732 for the 
external test set. Subsequently, our model predicted microsatellite 
status in the detected tumor areas of the WSIs for each case and 
the representative heatmaps for MSI prediction are shown in 
Figure 3A. Utilizing the CRC-TEST set, our deep learning model 
predicted MSI with an AUROC of 0.778 (95% Confidence 
Interval (CI): 0.705-0.851), an AUPRC of 0.783 (95% CI: 0.678-
0.860), a weighted accuracy of 0.741, a sensitivity of 0.61 and a 
specificity of 0.87 at the WSI level (Figure 3B and Table 1). Using 
the external test set, our model achieved an AUROC of 0.908 
(95% CI: 0.856-0.959), an AUPRC of 0.523 (95% CI: 0.313-
0.725), with a higher weighted accuracy than that achieved on 
the internal test set at 0.83, a sensitivity of 0.90 and a specificity 
of 0.80. When applying the TCGA dataset, we observed a 
relatively decreased performance with an AUROC of 0.775 (95% 
CI: 0.680-0.871), an AUPRC of 0.189 (95% CI: 0.046-0.531), a 
sensitivity of 0.85 and a specificity of 0.30 (Figure 3C). 

scanner (Leica Biosystems, Wetzlar, Germany) and then scanned 
at 20x magnification (0.242 μm/pixel) with a PANNORAMIC® 
250 Flash I scanner (3D Histech Ltd., Budapest, Hungary). 

Figure 1 shows the main steps for our model development: (i) 
WSI preprocessing followed by training an automated tumor 
detection model. (ii) Employment of the trained tumor detector 
to highlight relevant regions per WSI, extraction of the patches, 
and training of a secondary model for MSS/MSI patch probability 
prediction. (iii) WSI-level training of the model to predict MSS/MSI 
using patch image features extracted by the trained model (step-ii) 
and integration of information of all patch-based features per WSI.

Clinicopathologic characteristics of microsatellite 
instability 

Demographic, clinical and pathologic data from 198 patients in 
the CRC-TEST set and 196 patients in the external test set were 
retrieved by reviewing medical records including age, sex, stage 
based on the 8th edition of the American Joint Committee on 
Cancer (AJCC) system, therapy with neoadjuvant chemoradiation 
and tumor location and size. Two experienced pathologists 
reviewed all WSIs from the test sets (198 WSIs from CRC-TEST 
and 196 WSIs from the external test set) and manually estimated 
the mucinous component, TILs and the presence of neutrophilic 
and eosinophilic infiltration, which are associated with MSI 
prediction [12-14]. The experts were blinded regarding MSI 
status and any other clinical information during review of the 
WSIs and further details for the criteria we used for the histologic 
assessments.

Statistical analysis

The model performance for MSI prediction was measured 
using weighted accuracy, which was calculated by considering 
the different fractions of MSI in each data set, sensitivity, 
specificity, AUROC and Area Under the Precision Recall Curve 

Figure 3: Representative whole-slide images, heatmaps and performances for predicting microsatellite instability based on a deep learning 
approach. (A): From the original whole-slide images (WSIs; the first column), the tumor area is automatically segmented and delineated as a green 
area (the second column). Patch probability prediction for microsatellite status is performed on the tumor area and the heatmap is created (the 
third column). The heatmap of the third column shows the higher MSI probability in MSI cases than in MSS cases. (B): ROC curve of the internal 
test sets including the CRC-TEST (n=198), CRC-NCM (n=154), CRC-C (n=52) and CRC-M (n=47) sets and (C): of the external set from the 
outside institution and the TCGA set. Note: ROC: Receiver Operating Characteristic; AUC: Area Under the Receiver Operating Characteristic 
Curve; TCGA: The Cancer Genome Atlas; (B): (  ): CRC-NCM; (  ): CRC-TEST; (  ): CRC-C; (  ): CRC-M; (C): (  ): External 
set: AUC=0.908; (  ): TCGA: AUC=0.775.
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carcinoma (HR=19.73, P=0.026), neoadjuvant chemoradiation 
therapy (HR=0.03, P=0.002) and metastasis (HR=0.01, P=0.016) 
were significant independent factors for predicting MSI 
status (Table 3). In the external set, variables including poor 
differentiation, medullary carcinoma, Crohn’s-like lymphocytic 
reaction, neoadjuvant chemoradiation therapy and metastatic 
colorectal cancer were excluded from the multivariate analysis 
due to an insufficient number of positive samples. The presence 
of a mucinous or signet ring cell carcinoma component 
reinforced the model’s ability to predict MSI, while neoadjuvant 
chemoradiation therapy and metastasis reinforced the model’s 
ability to predict MSS.

Additionally, we investigate the distribution between the predicted 
MSI and MSS groups using manual assessment of Stromal Tumor-
Infiltrating Lymphocytes (sTILs), neutrophilic infiltration 
and eosinophilic infiltration on WSIs. Only a neutrophilic 
infiltration (>50/HPF) was significantly associated with MSI 
prediction rather than MSS in the CRC-TEST set (P=0.002); 
this finding was not observed in the external test set. Otherwise, 
sTILs and eosinophilic infiltration were not significantly 
associated with MSI prediction in both CRC-TEST and 
external test sets. Reviewing the patch images of WSIs that 
were classified as MSS or MSI, we found common histologic 
features within each group of microsatellite status, despite 
varying degrees of histo-morphologic heterogeneity. Stromal 
inflammatory cell infiltration, encompassing mononuclear 
cells, neutrophils and eosinophils, as well as the presence of 
a poorly differentiated area and mucinous components, were 
more pronounced in cases predicted to be MSI than in those 
predicted to be MSS. 

Clinicopathologic implications of predicted microsatellite 
instability

On the CRC-TEST set, the baseline clinicopathologic 
characteristics with microsatellite status determined using 
the pentaplex PCR method, which was used as ground truth, 
are presented in (Table 2). Variables, including age younger 
than 50 years, right-sided location, tumor size ≥ 6 cm, poorly 
differentiated tumor, mucinous or signet ring cell carcinoma, 
medullary carcinoma, expansile tumor growth, presence of 
Tumor Infiltrating Lymphocyte (intra-epithelial) (eTILs), Crohn’s-
like lymphocytic reaction and the absence of dirty necrosis, were 
associated with an unstable MSI status.

Using univariate logistic regression analysis, we further 
demonstrated that variables, including right-sided location, 
size ≥ 6 cm, poor differentiation, mucinous or signet ring cell 
carcinoma, medullary carcinoma, expansile growth, presence 
of eTILs and the absence of dirty necrosis, were significantly 
associated with the model’s MSI prediction performance on 
the CRC-TEST set. These results suggest that histopathological 
changes typically associated with MSI also influence the MSI 
prediction performance of the model. Through an analysis that 
categorized cases into three groups based on the content of a 
mucinous or signet ring cell carcinoma component, the group 
with a higher mucin component (≥ 50%) showed significantly 
higher Hazard Ratio (HR) than those of the groups with lower mucin 
components in both the internal and external sets (CRC-TEST, 
HR=18.60, P=0.029 and the external test set, HR=5.11, P=0.048).

Multivariate logistic regression analysis on the CRC-TEST set 
revealed that only the variables of mucinous or signet ring cell 

Accuracy (weighted) Sensitivity Specificity AUC

CRC-TEST (n=198) 0.741 0.61 0.87 0.778

CRC-NCM (n=154) 0.829 0.78 0.88 0.901

CRC-C (n=52) 0.692 0.35 0.91 0.681

CRC-M (n=47) 0.638 0.3 0.89 0.61

External test set (n=196) 0.83 0.9 0.8 0.908

TCGA (n=95) 0.789 0.85 0.3 0.775

Note: AUC: Area Under the Receiver Operating Characteristic Curve; CRC-TEST: Original internal test set; CRC-NCM: a separate cohort 
excluding the 44 cases of neoadjuvant chemoradiation therapy or metastatic colorectal cancer from the CRC-TEST; CRC-C: a cohort including only 
cases involving neoadjuvant chemoradiation therapy; CRC-M: a cohort including only cases of metastatic colorectal cancer in non-colorectal tissue 
samples; CRC: colorectal cancer; TCGA: The Cancer Genome Atlas.

Table 1: Performance of the deep learning model for microsatellite instability prediction on the test sets.
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MSI-PCR

Variable MSS (n=119) MSI (n=79) P

Age
<50 years 24 (20.2) 31 (39.2)

0.003
≥ 50 years 95 (79.8) 48 (60.8)

Sex
Male 92 (68.1) 36 (57.1)

0.131
Female 43 (31.9) 27(42.9)

Right-sided 23 (20.0) 33 (61.1)

<0.001Left-sided 87 (75.7) 17 (31.5)

Transverse 5 (4.3) 4 (7.4)

Tumor size
≥ 6 cm 39(32.8) 27 (50.0)

0.031
<6 cm 80 (67.2) 27 (50.0)

T stage

Tis/T1 2 (1.8) 5 (7.4)

0.089
T2 6 (5.4) 8 (11.8)

T3 74 (66.7) 37 (54.4)

T4a-b 29 (26.1) 18 (26.5)

WD 7 (5.9) 0 (.0)

<0.001

MD 95 (79.8) 42 (53.2)

PD 11 (9.2) 15 (19.0)

Mucinous or signet ring cell 
carcinoma

3 (2.5) 14 (17.8)

Medullary carcinoma 3 (2.5) 8 (10.1)

Expansile growth
Present 8 (7.5) 27 (37.0)

<0.001
Absent 99 (92.5) 46 (63.0)

eTILs
Present 37 (31.1) 61 (77.2)

<0.001
Absent 82 (68.9) 18 (22.8)

Crohn’s-like Present 60 (52.2) 51 (67.1)
0.041lymphocytic reaction

55 (47.8) 25 (32.9)

Necrosis
Lack of dirty necrosis 14 (11.8) 47 (59.5)

<0.001
Presence of dirty necrosis 105 (88.2) 32 (40.5)

MMR IHC

Loss of expression in one or 
more MMR proteins

3 (2.5) 46 (85.2)
<0.001

No loss 116 (97.5) 8 (14.8)

Note: MSS: Microsatellite Stable; MSI: Microsatellite Instability; PCR: Polymerase Chain Reaction; WD: Well-Differentiated; MD: Moderately 
Differentiated; PD: Poorly Differentiated; eTILs: Tumor-Infiltrating Lymphocytes (intra-epithelial); MMR IHC: Mismatch Repair Protein 
Immunohistochemistry

Table 2: Clinicopathologic features and microsatellite status of polymerase chain reaction on the CRC-TEST set.

Histology denocarcinoma

denocarcinoma

denocarcinoma

,

,

,

Absent

Anatomic site

A

A

A
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improved performance, with a sensitivity of 0.94 and a similar 
specificity of 0.86, compared with the performance of the model’s 
prediction alone. 

Performance on the modified ground truth using targeted 
next-generation sequencing 

Reviewing the discordant results between MSI-PCR and the 
model’s prediction, we identified 9 cases that exhibited a 
substantial disparity in microsatellite status between MSI-PCR 
and the probability scores calculated by the model: MSS on MSI-
PCR but probability scores of >0.98 on the model’s prediction (4 
cases) or MSI on MSI-PCR but probability scores of approximately 
zero (5 cases). Subsequently, we conducted targeted NGS on these 
9 cases and discovered that among the cases initially identified as 
MSI-positive by MSI-PCR, 3 cases were later found to be false-
positive results due to interpretation errors. Upon reevaluation, 
these cases were re-classified as MSS. With the modified ground 
truth determined by NGS, the model’s performance yielded an 
increased AUROC of 0.910 (95% CI: 0.853-0.967), an increased 
sensitivity of 0.80 and a similar specificity of 0.87 compared with 
those obtained with the original ground truth of MSI-PCR.

DISCUSSION

The prediction of MSI or mismatch repair deficiency in 
colorectal cancer using H&E stained histology slides has emerged 
as an intriguing and current issue in digital pathology. Multiple 
studies have introduced new algorithms for MSI prediction, 
demonstrating remarkable performances [7-9,11,15,16]. In this 
study, our primary objective was to develop and externally validate 
a model for predicting MSI, achieving an AUROC of 0.908, a 
performance level comparable to that reported in previous studies. 
Furthermore, we investigated the impact of various clinicopathologic 
parameters on the model’s performance and found that predictions 
on tumours with neoadjuvant therapeutic effects or those with 
metastasis significantly hinder the model’s accuracy.

Performance of predicting microsatellite instability on 
tumors with neoadjuvant therapy or metastasis 

To confirm the effect of neoadjuvant chemoradiation therapy 
or metastasis on the model’s performance for predicting MSI, 
additional test sets (CRC-NCM, n=154; CRC-C, n=52; CRC-M, 
n=47) were constructed. In the CRC-C or CRC-M sets, the model 
tended to classify each patch as MSS instead of MSI (Figure 3A). 
This was also confirmed by the multivariable analysis as described 
above (Table 3). On the CRC-NCM set, the model achieved a 
significantly higher performance than on the CRC-TEST set with 
an AUROC of 0.901 (95% CI: 0.845-0.958), an AUPRC of 0.877 
(95% CI: 0.759-0.941), an accuracy of 0.829 and a sensitivity 
of 0.78 (Figure 3B and Table 1). Of note, the performance gap 
in the AUROC between the CRC-NCM and CRC-TEST sets 
was statistically significant (P=0.010). We observed a decline 
in performance on the CRC-C and CRC-M sets with AUROC 
values of 0.681 (95% CI: 0.530-0.832) and 0.610 (95% CI: 0.436-
0.785), respectively. The corresponding AUPRC values were 
0.565 (95% CI: 0.349-0.758) for the CRC-C and 0.613 (95% 
CI: 0.392-0.796) for the CRC-M. The model exhibited a notable 
decrease in sensitivity, with values of 0.35 on the CRC-C set and 
0.3 on the CRC-M set. 

Incorporating the deep learning-based assay with 
mismatch repair protein immunohistochemistry

We further explored the model’s performance by combining our 
deep learning-based model with MMR IHC, presenting a method 
of utilizing the model as a diagnostic assistant or screening tool. 
The combined tools for MSI measurement were tested on the 
CRC-NCM set with the ground truth of MSI-PCR. Beginning 
with the model’s prediction, cases with predicted MSS and 
retained MMR expression are classified as the MSS group and 
cases with predicted MSI or loss of MMR expression are classified 
as the MSI group. This incorporated prediction model achieved 

CTC-TEST set External test set

Covariates HR (95% CI) P value HR (95% CI) P value

Poorly differentiation 0.88 (0.219-3.52) 0.854 - -

Medullary carcinoma 8.79 (0.69-112.12) 0.094 - -

Expansile growth 3.27 (0.71-15.16) 0.129 2.45 (0.76–7.97) 0.135

eTILs 1.29 (0.39-4.25) 0.679 2.24 (0.94–5.33) 0.068

Crohn’s-like lymphocytic 
reaction

0.37 (0.12-1.14) 0.085 - -

Necrosis 0.95 (0.30-2.99) 0.932 0.36 (0.15-0.85) 0.02

Mucinous or signet ring cell 
carcinoma

19.73 (1.44-270.30) 0.026 1.03 (1.01-1.05) 0.004

Neoadjuvant 
chemoradiation therapy

0.03 (0.00-0.26) 0.002 - -

Metastatic colorectal cancer 0.01 (0.00-0.45) 0.016 - -

MSI-PCR 21.51 (6.21-74.54) <0.001 24.97 (4.82-129.48) <0.001

Note: eTILs: Tumor-Infiltrating Lymphocytes (intra-epithelial); MSI: Microsatellite Instability; PCR: Polymerase Chain Reaction; HR: Hazard Ratio; 
CI: Confidential Interval. 

Table 3: Multivariate logistic regression analysis for microsatellite instability prediction.
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While previous studies have explored the connection between 
clinicopathologic features and deep learning-based MSI 
prediction, these features were either not easily understandable or 
had minimal impact on the model’s outcome [7,11]. Recent studies 
have revealed that several morphologic features within tumours 
such as debris, lymphocytes, or necrotic cells are significantly 
associated with MSI prediction. However, it is important to note 
that these features may also have a possibility of false positivity 
when predicting MSI [10,17]. Echle, et al., [16] demonstrated 
that mucinous carcinoma was significantly associated with false 
positivity, indicating that extensive mucinous tumors should be 
validated using conventional standard methods of MSI testing rather 
than relying solely on AI systems. Even though previous studies have 
evaluated only a subset of histologic features, it is crucial to recognize 
that clinicopathologic variables encountered in real-world have a risk 
of misclassification and should not be disregarded. 

We showed that multiple MSI-associated clinicopathologic 
parameters (right-sided tumour location, size ≥ 6 cm, poor 
differentiation, mucinous or signet ring cell carcinoma, medullary 
carcinoma, expansile growth, presence of eTILs, and lack of dirty 
necrosis) were significantly associated with predicted MSI. The 
presence of mucinous or signet ring cell carcinoma showed an 
increase in the HR in proportion to the content ratio, suggesting 
that the presence of mucinous component might enhance the 
model’s predictive ability for MSI (Table 3). It is worth noting 
that variables of neoadjuvant chemoradiation therapy and 
metastasis have shown a significant negative relationship with 
MSI prediction, indicating that they can act as confounding 
factors for the model’s performance. 

In the CRC-C set (patients who underwent neoadjuvant 
chemoradiation therapy), there were 10 cases of false negativity 
(accounting for 45.5% of the predicted MSS group) without any 
false positivity. When reviewing the patch images, no discernible 
histo-morphologic differences were observed between the true 
negative and false negative groups in the CRC-C set. Despite 
the presence of histologic changes by therapeutic response, such 
as predominant colloid change, nuclear atypia, eosinophilic 
cytoplasmic change and fibrous or inflammatory stromal change, 
these features did not appear to contribute to distinguishing 
between true negatives and false negatives. Therefore, the high 
tendency of false negativity in the CRC-C set may be attributed 
to a low proportion of tumour cells detected in the slide images. 
A previous study showed lower than average performance for 
MSI prediction in patients with rectal cancer, which might be 
influenced by the negative impact of neoadjuvant therapy [7].

Visualizing patches in the CRC-M set (metastatic colorectal cancer), 
we observed the presence of several extracted patches of normal 
hepatic parenchyma in certain cases that were predicted as MSI. 
This suggests that the histo-morphologic similarity recognized 
by the model between the tumour cells and hepatocytes could 
potentially reduce the performance. These challenges might be 
attributable to differences in tissue types between the training/
validation, which was performed on WSIs of colorectal tissues 
and the CRC-M set. To overcome these limitations and optimize 
a deep learning model for MSI prediction in clinical practice, it is 
crucial to conduct a large cohort study that incorporates transfer 
learning beyond specific tissue types. This approach would help 
enhance the model's generalizability and improve its performance 
across diverse clinical scenarios. 

Given the impact of clinicopathologic variables on the model’s 
outcome, relying solely on a deep learning-based approach for 

MSI testing may have limitations. However, it can be utilized in 
clinical practice alongside conventional MSI testing methods. By 
combining both approaches, it is possible to reduce false results 
and improve the overall accuracy of MSI testing. As a feasible 
alternative screening tool, we suggested MSI prediction-workflow 
diagrams where MMR IHC was added to the model’s prediction. 
Indeed, a recent study has suggested an approach that combines 
AI-based screening for MSI followed by confirmation using 
conventional MSI tests [9]. This strategy optimizes resources and 
reduces unnecessary testing, making the overall process more 
cost-effective while maintaining accuracy in MSI detection. 

Our deep learning-based MSI prediction was based on patches 
within tumour areas and as a result, the extracted histo-
morphologic features were primarily tumour-associated. Certain 
features, such as Crohn’s-like lymphocytic reaction, which is a 
known characteristic of MSI and mainly located outside of the 
tumour area, did not exhibit a correlation with our MSI prediction. 
In this study, scanning was performed at 20x magnification, 
which may have limited the incorporation of higher-resolution 
information such as image texture and tissue boundary details 
into the prediction. However, all input patches were standardized 
to a resolution of 0.5 μm/pixel, mitigating the impact of scanning 
at 20x magnification on WSIs [8]. Another limitation is the MSI 
proportion in the internal test set (40%), which was higher than 
the practical ratio of 10-20% [18]. Nevertheless, the internally 
trained model demonstrated better MSI prediction performance 
on the external test set, which consisted of a practical proportion 
of MSI cases (10%). 

CONCLUSION

Our study explored the influence of clinicopathologic features 
on deep learning-based MSI prediction, an aspect that has received 
limited attention in prior research. We found that prediction on 
tumour specimens with neoadjuvant therapy or metastasis can 
significantly impact the model’s performance for MSI prediction. 
Our results highlight the necessity of meticulous validation of deep 
learning models under diverse clinicopathologic backgrounds to 
ensure their clinical applicability. Incorporating such models alongside 
conventional MSI testing methods can enhance accuracy and optimize 
resources in clinical practice. Moreover, the study underscores the 
importance of considering specific study components for deep learning-
based MSI prediction to ensure accurate and appropriate application in 
real-world clinical scenarios.
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