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Introduction
Shotgun proteomics using tandem mass spectrometry generates 

accurate peptide molecular weight masses together with fragmentation 
patterns in the form of spectra for peptides in a biological sample. 
There are several in-silico algorithms to assign spectra to theoretical 
peptide sequences, predominantly based on searching a protein 
sequence database, these include Mascot [1], Sequest [2], MS-GF+ 
[3], and Andromeda [4]. Most software applications report arbitrary 
fitness scores corresponding to the quality of a peptide to spectrum 
match (PSM). These scores must then be assessed to allow accurate 
reporting of experimental accuracy and improve discrimination of 
true and false identifications. Common statistical metrics reported 
for proteomic identifications include false discovery rates, q-values 
and posterior error probabilities (PEP). The false discovery rate (FDR) 
of an experiment states the estimated percentage of incorrect PSMs 
at a given significance threshold. Depending of the method used to 
estimate the FDR it is sometimes possible for a lower significance 
threshold to produce a better FDR, to address this q-values are used 
expressing the minimal FDR at which each PSM is significant. Both 
FDR and q-values represent the amount of error in a dataset, whereas 
the PEP is the probability of a specific observed PSM identification 
being incorrect. Calculation of these statistics allows unbiased 
assessment and comparison of proteomic datasets and the individual 
PSM identifications. Correctly assessing the false discovery rate of a 
proteomic dataset is therefore an important step in all experiments. 
When using sequence database searches to assign peptide sequences 
to spectra, most approaches will use a set of decoy protein sequences, 

either concatenated to the search database or as a separate search, 
with which to estimate the FDR [5-7]. The decoy sequences model the 
distribution of incorrect peptide sequence matches to query spectra. 
The assumption can then be made that for every match to a decoy 
peptide sequence, it is likely there is also a false positive identification 
of similar score amongst the target PSMs. This assumption requires the 
decoy sequences to be similar enough to real target protein sequences 
to represent a random assignment whilst not actually containing any 
peptides that could be present in the biological sample. However, to 
accurately model incorrect PSMs a decoy database needs be similar 
to the target database in terms of size and peptide composition. There 
are several methods to generate decoy peptide sequences for assessing 
FDR in the identification of proteomic mass spectrometry data. These 
include random sequence generation, peptide shuffling, marchov 
models, and reversing target protein sequences [8]. The most common, 
easiest and fastest method is to reverse the protein sequences in the 
target search database. This method preserves peptide cleavage sites 
and overall composition without making any assumptions about the 
proteolytic enzyme used to digest the biological protein sample. This 
method has proven to be a robust and valid method for the majority of 
small to medium sized experiments. However, for large datasets such 
as are commonly used in Proteogenomics [9,10], which can include 
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many prospective sequences such as translated RNAseq data or full 
six frame genome translations, there will be a significant number of 
persistent peptides in the decoy set that are also in the target proteins. 
These peptides are easily filtered, discarding the overlapping decoy 
identification from the results prior to estimating FDR or post-
processing using software such as Percolator [11,12] or PeptideProphet 
[13]. However, removing these decoy peptides changes the ratio of 
decoys to targets and can mask valid decoy assignments. This leads 
to inaccurate false discovery rate estimation. The effect in smaller 
scale experiments is marginal; however, the problem is amplified 
in larger-scale high throughput experiments, as small inaccuracies 
in the FDR become more significant in larger datasets. This can be 
further exacerbated when searching large sequence databases or with 
multiple variable modifications, where the overlap between target 
and decoy peptides will be greater. This decoy peptide overlap also 
causes problems beyond PSMs assignment and will be exaggerated at 
the protein assignment level. One approach to adjust for the peptide 
overlap is to extend the pi0 or percentage of incorrect targets (PIT) 
ratio, traditionally used in separated target-decoy searches to adjust 
FDR estimations to take account for the fact that the majority of targets 
being true positives. This ratio tries to estimate the true number of 
incorrect identifications in the target database [6] by modelling the 
bimodal distribution of target identifications. This correction factor 
could also be adjusted to account for overlap between the target and 
decoy databases. However, we propose that reducing redundancy 

between target and decoy peptides prior to searching is a more effective 
method and easily achieved by shuffling the overlapping peptides. 
There will also be a portion of decoy peptides having different amino 
acid sequences but the same precursor mass and in some cases the same 
fragmentation pattern as peptides in the target database. This is further 
compounded when searching with a set of variable modifications. The 
problem is even greater for high resolution MS data as the accuracy of 
a precursor mass match is a factor in the scoring of PSMs. To reduce 
the occurrence of these peptides, cleavage sites can be switched with 
the preceding amino acid slightly altering the mass of every peptide 
and reducing the number of matching precursor masses between target 
and decoy databases. Additionally indistinguishable isobaric amino 
acids such as leucine and isoleucine need to be considered and can be 
replaced with a common symbol in both target and decoy sequences [9]. 

Presented here is a new freely available and open source python 
tool allowing quick generation of decoy databases for both separate 
and concatenated searches with a great amount of configurability. 
DecoyPyrat generates decoys in a hybrid: reverse, switch and shuffle 
multi-step process as shown in Figure 1. Target protein sequences 
are reversed and the cleavage sites, defined by the user to suit the 
experimental data, are switched with the preceding amino acid. At the 
same time isobaric peptide sequences are resolved replacing leucine 
and isoleucine with a common amino acid symbol. This process 
quickly creates an initial reversed and switched decoy database, with 

Figure 1: Flowchart for hybrid decoy database generation process in DecoyPyrat. This flowchart describes the process by which DecoyPyrat reads in 
a FASTA formatted target sequence database replacing isobaric peptides and using a switch and reverse method to generate initial target and decoy 
digested peptide sets. The overlap between these two sets is examined and overlapping peptides are iteratively shuffled. These peptides then replace their 
unshuffled counterparts in the final decoy database.
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cleavage sites and general peptide composition preserved. The second 
stage calculates the intersection of peptide sequences between target 
and decoy peptides. Peptides found to be in both are shuffled iteratively 
to create a unique decoy peptide. The shuffled peptide sequence then 
replaces all occurrences of that peptide throughout the decoy database. 
This preserves the sequence redundancy within the decoy database. To 
speed up the process a minimum length of peptide is considered when 
reshuffling, set to 5 amino acids by default as this is the minimum most 
search engines consider when matching spectra. Occasionally, small 
low complexity peptides will not have a unique sequence combination, 
especially with very large target databases. DecoyPyrat reports these 
failed decoy peptides, which are usually smaller peptides below 7 
amino acids in length. To further avoid inaccuracy due to the small 
number of remaining failed decoy peptides, the minimum peptide 
length considered and matched to PSMs in a search can be increased; 
however, this is a trade-off between accuracy and the protein coverage 
achieved.

Results and Discussion
To assess the performance of DecoyPyrat versus a standard reverse 

database approach, decoy databases were generated for increasingly 
larger target databases, obtained from a six frame translation of the 
mouse reference genome. Some commonly used protein sequence 
databases including mouse and human reference UniProt proteomes 
were also included in the analysis. The results of these decoy generation 
simulations are shown in Figure 2. The runtime for DecoyPyrat 
performing the hybrid decoy database generation increases in a linear 
fashion with the size of the target database. It should be noted that the 
size metric used for the databases is the number of unique peptides, 
which accounts for any redundancy between the protein sequences 
with in the target database. The redundant overlap between the target 
and decoy peptides for the reversed approach increases with the size 

of the database and can make for more than 5% of the peptides in the 
larger search spaces. The number of redundant target-decoy peptides 
is significantly reduced by the hybrid method, maxing out at just over 
1% of the total peptides for very large databases, whereas the fraction of 
redundant peptides in the standard reverse database approach increases 
to over 5 times this level. This 1% residual redundancy as mentioned 
previously is mainly small low complexity peptides that do not have a 
non-redundant amino acid combination. It is also interesting to note 
that the decoys generated from the complete UniProtKB database, 
which includes both Swiss-Prot and TrEMBL in their entirety, show 
much lower peptide redundancy than would be expected for a database 
of that size based on the trend seen in other databases. A possible 
explanation for this is the introduction of many more unknown or “X” 
amino acids in the TrEMBL sequences. 

To investigate the effect of the hybrid decoy database method on 
real search results, a large dataset of publically available CID spectra 
collected from mouse tissue samples was used. This dataset published 
in 2013 by Geiger at al., [14] consisted of 136,932 spectra collected on 
a LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific) from 
mouse brain medulla tissue samples. This dataset was searched using 
Mascot (v2.5) (Matrix Science) [1] using Mascot’s integrated reversed 
decoy database method. The search parameters used were set to use 
a full tryptic digest, with up to 3 missed cleavages, 10 ppm precursor 
tolerance, 0.6 Da fragment tolerance, a fixed carbamidomethyl cysteine 
modification, and a variable methionine oxidation modification. The 
search database included all sequences in the M8 GENCODE mouse 
release [15] concatenated with a full 6 frame translation of the genome 
filtered to only include open reading frames greater than 20 amino 
acids. The same dataset was searched again with the same search 
parameters against separate and concatenated target-decoy databases 
generated using DecoyPyrat. Using the MascotList results summary 
utility which is part of the MascotPercolator tool (http://www.sanger.

Figure 2: DecoyPyrat runtime and target-decoy peptide overlap. This plot depicts as a percentage the peptide redundancy between the target and 
decoy databases when using a simple reversing approach versus the hybrid DecoyPyrat method. The x-axis shows the number of unique tryptic peptide 
sequences in the original target database this roughly scales with the number of proteins in the target database; this axis is displayed on a log10 scale. The 
primary y-axis displays the percentage of the unique peptide sequences that are common to both the target and decoy databases. The secondary y-axis 
displays runtime in seconds on a log10 scale. The blue line indicates the runtime of DecoyPyrat.
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ac.uk/science/tools/mascotpercolator) [16], target PSM q-values were 
calculated for each search. These results are displayed in Figure 3. The 
q-values, equivalent to FDR [17], are directly dependant on the number 
of decoy and target PSMs at any given score. In the figure the number 
of PSMs reported at any given q-value threshold are displayed when 
using a reversed decoy database and separate or concatenated hybrid 
decoy databases generated with DecoyPyrat. The reverse database 
method has 10% more significant target PSMs at any given threshold. 
This may seem like a good thing for reversed decoy databases when 
trying to obtain as many significant PSMs as possible. However, when 
considering the fact that the only difference between the searches is the 
amount of redundancy between the target and decoy databases there is 
doubt cast on the accuracy of the q-values in the reversed search. The 
reverse database curve is seen to be shifted to the left, reporting lower 
q-values for the same number of PSMs, otherwise the methods follow 
a similar profile.

In conclusion, we present a new tool to quickly generate decoy 
databases using a hybrid method to reduce peptide redundancy to 

the target database as well as dealing with isobaric precursor masses. 
We show this improved method of decoy generation is invaluable for 
estimating accurate false discovery and error probabilities in large scale 
proteomics experiments. It overcomes some limitations of the most 
common approaches to decoy generation that work well for small to 
medium target search spaces. However, when applied to larger whole 
proteome or full six frame genome translations as might be used for 
proteogenomic studies the inaccuracies in the decoy model have a 
significant effect on the number of PSMs reported at any particular 
threshold. This has a knock-on effect on the inference of protein 
level statistics [18]. DecoyPyrat is an efficient open source tool which 
significantly reduces this inaccuracy in decoy databases; it is fast, 
adaptable and can be used with many user defined parameters such 
as digestion specificity. DecoyPyrat is available for download from 
(http://www.sanger.ac.uk/science/tools/decoypyrat)
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Figure 3: Comparison of significant PSMs reported using reversed database vs. hybrid database. The q-value (FDR) at which PSMs are reported is directly 
dependant on the number of decoy and target PSMs with scores equal to or above the scoring threshold. In this figure the number of PSMs at any given 
q-value are reported. The plot compares the curve obtained searching targets with a reverse decoy database (generated using the internal Mascot decoy 
generation tool) or hybrid decoy databases generated with DecoyPyrat and either searched separately or concatenated with the target database. The 
reverse database method results in around 10% more PSMs at any given threshold. This may seem good in that more PSMs equates to greater depth of 
proteome identified. However, when we consider that the only difference between the searches is the redundancy between the target and decoy databases 
there is doubt cast on the accuracy of the q-value in the reversed search. All three curves follow each other reasonably well with the reverse database 
shifted to the left and reporting lower q-values.
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