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Introduction
Human tissue samples provide ideal subject material for proteomic 

studies investigating the molecular features of diseases. Formalin-
fixed, paraffin-embedded (FFPE) and fresh-frozen tissues are routinely 
prepared from diagnostic biopsies by clinicians and are often archived, 
particularly in the case of fixed samples. These specimens are a valuable 
resource for biomarker discovery because they embody the actual 
disease in question and harbor all the variations and permutations 
resulting from disease heterogeneity, diversity among demographic 
groups, and are often associated with patient records which can provide 
valuable insights into prognosis and treatment response. In contrast, 
immortal human cell lines (the dominate laboratory model for many 
diseases, including cancer) represent a single cell type isolated from one 
individual and passaged under laboratory conditions, sometimes for 
decades. These lines can become unknowingly cross-contaminated by 
other cell lines, may lose important features in the course of culturing 
and/or may acquire characteristics not present in the original donor 
tissue. Cell lines have traditionally been more amiable to proteomic 
analysis than fixed tissues; mass spectrometric techniques such as 
SILAC, where "heavy" amino acids are introduced to cell culture 
media, enable quantitative measurements of protein abundance and 
haveserved as the foundation of proteomic studies. However, fixed or 
frozen human tissues cannot be grown in the presence of labeled amino 
acids and during the fixation process amino acid residues necessary 
for other types of isotopic labeling become masked. These facts, and 
other challenges, such as variation in fixation time, incomplete or 
partial fixation of tissue, and degradation of proteins due to long-term 
storage, havecomplicated proteome analysis of FFPE tissues in the past. 
Recently, improved protein extraction methods, a better understanding 
of the chemistry that occurs during fixation and the development of 
label-free quantitative mass spectrometric techniques have allowed 
proteome analysis of FFPE samples ranging across a variety of human 
diseases. The contributions these analyses have made to the diagnosis 
and treatment of many human diseases is evidence that the field of 
FFPE proteome analysis has matured beyond its infancy. 

Accomplishments in FFPE Proteome Analysis
Profiling of FFPE proteomes has resulted in the discovery of putative 

biomarkers for several diseases, yielding protein signatures that may 
improve diagnostic differentiation and could contribute to therapeutic 
approaches. Proteomic analysis of large cell neuroendocrine carcinoma 
(LCNEC) and small cell lung carcinoma (SCLC) revealed four 
candidate biomarkers whose expression differs between the two tissue 
types [1]. These features could aid in diagnostic differentiation of these 
two carcinomas, in which pre-therapeutic histological distinction has 
been problematic. In another example, protein extracts from normal 
pancreas, chronic pancreatitis and pancreatic cancer FFPE tissue 
identified exclusively expressed proteins associated with each of the 
three tissue types [2]. Following further validation, expression of these 

proteins in pancreatic tissue could improve diagnosis of individuals 
with diverse pancreatic histologies. Another study of pancreatic cancer, 
where the proteomes of FFPE pancreatic ductal adenocarcinoma 
and matched lymph node metastases were analyzed, resulted in the 
identification of two potential epithelial-specific therapeutic targets, 
14-3-3 sigma and S100P [3]. In yet another example, proteome analysis 
utilizing benign prostate hyperplasia and prostate cancer FFPE tissues
identified known prostate cancer markers such as prostate-specific
antigen (PSA) and prostatic acid phosphatase (PAP) [4]. This study
also compiled a panel of candidate biomarkers, including MIC1,
which may prove useful in distinguishing between benign prostate
hyperplasia and prostate cancer. A study of breast cancer at defined
clinical disease stages revealed potential markers indicative of stage
and recurrence [5]. Several others FFPE proteome studies have been
performed, resulting in the discovery of putative biomarkers for
esophageal adenocarcinoma [6], lung neuroendocrine tumors [7],
colorectal cancer [8], tubo-ovarian cancer [9], breast and prostate
metastases [10] and cutaneous and metastatic melanoma [11-13].
Other proteomic studies in FFPE malignant melanoma and benign nevi 
tissues identified potential biomarkers differentiating Spitz nevi from
Spitzoid malignant melanoma [14], which can be extremely difficult to
differentiate based on histological criteria. In another study, proteomic 
alterations resulting in activation of hallmark cancer pathways in
malignant melanoma relative to benign nevi were discovered, resulting 
in the identification of new candidate biomarkers as well as potential
therapeutic targets [15]. Additionally, a study examining the effects of
ionizing radiation on FFPE heart tissue revealed alterations in lipid and 
pyruvate metabolism as well as mitochondrial impairment [16]. These
studies illustrate the value of proteome analysis of fixed tissues and
highlight contributions made not only to biomarker discovery but also
to therapeutic decision making and to novel drug design.

Challenges of FFPE Proteome Analysis
One of the biggest challenges hindering proteome analysis of FFPE 

tissues is the efficient extraction of proteins from these samples [17-
19]. Since the first report of efficient protein extraction from FFPE 
tissues for molecular analysis [20] researchers have been adjusting the 
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components of protein extraction buffer to yield larger data sets for 
analysis. Inclusion of at least 2% SDS seems to have a profound effect 
on fixed cell lysis and protein denaturation [13,15,17,21-27], although 
it is important to dilute this percentage down before trypsinization 
because of adverse effects on trypsin activity. Extraction buffer with 
an alkaline pH (8.0-10.0) has been shown to be optimal for protein 
extraction [28,29]; buffers with a neutral pH (7.5) or acidic pH (4.0) 
are less efficient [25,29]. In addition to optimization of extraction 
buffer, protein yield can be improved through the reversal of crosslinks 
formed during fixation. Several approaches have been employed for 
crosslink reversal including heating at 90°C for one hour followed 
by heating at 65°C for four hours [15]. Heating tissue samples likely 
contributes to protein extraction through the hydrolysis of intra- 
and intermolecular methylene bridges (crosslinks) [30,31], which 
may also open otherwise concealed cleavage sites for trypsin. Several 
commercially available protein prep kits are currently available, though 
many groups appear to prepare their own extraction buffers and 
optimized extraction protocols. In addition to the approaches listed 
above, other modifications have been made for protein extraction 
including the use of sonicationto fragment genomic DNA and other 
nucleic acid components of fixed tissues [15]. These advancements in 
protein extraction have contributed to the achievements listed above 
in FFPE proteome research. In the future, cataloging the proteomes 
of additional diseases as well as annotating prospective biomarkers 
will be necessary for the realization of the full potential of archival 
fixed tissues, namely the routine clinical usage of proteomic features 
of human tissues during diagnosis, prognosis and individualized 
therapeutic intervention.
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