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Introduction
Aging, the process of growing old, is characterized by the gradual 

deterioration of normal cellular functions, leading to a steady decline in 
the biological, physical and psychological abilities. It is a phenomenon 
which is genetically determined and environmentally modulated [1]. 
It also increases the susceptibility for a number of complex diseases, 
regardless of whether or not they are ultimately responsible for 
the death of the individual developing them. Aging activates some 
irreversible series of biological changes that inevitably result in death 
of the organism. Although, the causes of these changes may be entirely 
different in different cases implying no common mechanism, yet they 
often imply a mutual element of descent. Therefore, aging is a most 
common yet mysterious aspect of biological studies, even after being a 
subject of interest to humans since the beginning of recorded history.

Finding Suitable Model System for Aging Research
Years of research on aging have found several genes and many 

biological processes that are associated with; however, many 
fundamental questions continue to be intensely debated [2,3]. Some 
of the fundamental questions which are still unanswered are: (i) How 
many biological processes contribute to aging? What are they? (ii) Is 
it possible to reverse the phenomenon of aging? (iii) Can a single gene 
mutation recapitulate all the aging induced consequences? Moreover, 
the molecular basis of aging remains poorly understood, in part, because 
we lack a large number of molecular markers of aging that can be used 
to measure the aging process in specific tissues. Thus, unravelling the 
mysteries of aging is still on the frontier of biomedical research. 

The last two decades have witnessed a tremendous upsurge in 
the genetic analyses of aging, with a greater emphasis towards the 
elucidation of the molecular mechanisms, pathways, and physiological 
processes implicated in longevity. Since the limitations of human 
genetic studies make it difficult to identify or analyse a candidate 
gene and pathways in greater detail, and with the fact that the basic 
biological processes remain conserved throughout phylogeny, model 
organisms from bacteria to mammals have been utilized to resolve 
different aspects of aging [4]. However, classical model systems such 
as Caenorhabditis elegans and Drosophila melanogaster have emerged 
as excellent systems to elucidate essential genetic/cellular pathways of 
human aging. Some of the major advantages of using Drosophila for 
aging related studies include its short life span, ease of maintenance, 
availability of powerful genetic tools, accessibility of stocks with many 
different alterations, knowledge of the complete genomic sequence 
and large homogeneous populations. Moreover, two major attractions 
for choosing Drosophila for aging related studies include its precise 
identification of sexually mature state, which starts within 24 h of 
eclosion. It is during this “adult” phase of its life when aging is usually 
thought to take place, which is otherwise little difficult to determine 
with other model systems [5]. Successively, D. melanogaster is almost 
exclusively a post-mitotic organism, i.e. an adult fruit fly almost 
consists of post-mitotic cells, and therefore, they are considered to 
harbour a set of synchronously aging cells, which simplifies recording 
of observations and provides conclusive results [6]. 

Complexity of Aging
Aging is complex. Diverse molecular and cellular damages 

accumulate over time, causing functional failures in different tissues. 
Aging is associated with the accumulation of a large variety of 
post-translational modifications in stable proteins, which include 
deamidation of asparaginyl and glutaminyl residues and the subsequent 
formation of isopeptide bonds, protein glycation, methionine 
oxidation, etc. [7]. Furthermore, the disturbed cellular homeostasis 
leads to an increased rate of protein modification: in an 80-year old 
human, half of all proteins may become oxidized [8]. In prokaryotes, 
translational errors result in folding defects and subsequent protein 
oxidation [9], which predominantly takes place in growth arrested 
cells [10]. Additionally, damaged signalling networks induced by aged 
proteins tend to loose their original stringency and induce irregular 
protein phosphorylation [11].

Heat Shock Proteins and Aging
Age-related post-translational modifications induce conformational 

changes and impaired protein function. Although in normal conditions 
intracellular protein turnover is rather fast, increased carbonyl content 
of aging proteins (an indicator of oxidative damage) significantly 
reduces the turnover rate in several tissues, e.g. brain [12]. Subsequently, 
all these “old age” induced events cause a substantial accumulation of 
post-translationally modified, mis-folded proteins, which pose a great 
danger to the aging individual. Since the folding anomaly in aged 
organism/cell is mostly due to posttranslational modifications, the 
changes become irreversible and cannot be reversed by conventional 
protein folding machinery. Thus, the only solution to protect the aging 
cells from these mis-folded proteins is their elimination, and not their 
repair. The changes in protein levels and their folding states in aged 
organisms are sensed by Heat shock proteins (Hsps), which selectively 
recognize and bind to the exposed hydrophobic surfaces of non-native 
proteins in a non-covalent interaction, in order to inhibit irreversible 
aggregation, and to mark them for further degradation [13].

As it is increasingly clear now that aging arises due to reduced 
capacity of cells to protect, maintain, and repair tissues over time 
and these occur at multiple levels; from the physiological system, 
through organs, to cells and individual biomolecules; Hsps appear to 
be a major group of proteins involved in modulation of aging related 
phenomenon. Hsps or stress proteins are also known as molecular 
chaperones, because they are synthesized in increased amounts after 
brief exposure of cells to an elevated temperature, or a variety of 
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other stresses such as irradiation, viral infection, oxidative stress, 
etc. [14]. They represent groups of ubiquitous and highly conserved 
protein families which utilize ATPs to stabilize unfolded proteins, or 
unfold them for translocation through membranes, or mark them for 
degradation [14]. Conventionally, principal Hsps range in molecular 
mass from 15 to 110 kDa, and are grouped into 5 major families, viz. 
Hsp100 (100-104 kDa), Hsp90 (82-90 kDa), Hsp70 (68-75 kDa), Hsp60 
(58-65 kDa), and the small Hsp (15-30 kDa) families. In addition to 
stress response and protein folding, Hsps have also been demonstrated 
to be involved in various aspects of development, apoptosis, fertility, 
maintenance of cellular homeostasis, evolution, modulation of signals 
for immune/inflammatory responses, etc. [14]. 

In D. melanogaster, mild stress in the form of heat shock has been 
found to result in an increase in life span. This response has been 
credited partly to the activation of protective and/or repair systems, 
especially the induction of the heat shock chaperone system with 
Hsp70 being in the centre [15]. Hsp70 is one of the major components 
of the chaperone system of the cell, which exhibit increased level with 
age. It was also reported that presence of additional copies of the Hsp70 
resulted in decreased mortality rates in Drosophila following a heat 
stress, which was otherwise too brief to extend life span in normal flies 
[16]. 

Subsequently, several other Hsps such as Hsp90, Hsc70, Hsp60, 
Hsp40, and small Hsps (sHsps) have been found to be involved in aging 
related phenomenon [17]. Interestingly, it has been demonstrated 
that age induced damaged proteins compete with the Heat shock 
factors (Hsf) in binding to the Hsp90-based cytosolic complexes, 
which contributes to the generally observed constitutively elevated 
chaperone levels in aged organisms [18]. Furthermore, since the 
protein degradation is mostly accomplished by the proteasome and 
mediated by various Hsps, accumulation of abnormal proteins in aged 
organisms requires an increased amount of Hsps to prevent protein 
aggregation and to assist in refolding, or degradation. It has been 
suggested that in aged animals or human subjects, Hsp90 protects the 
age-related decline of proteasome activity. However, the association of 
Hsp90 with the proteasome decreases with age, which may lead to an 
enhanced vulnerability of the proteasome for stress, induced damage 
in aged organisms. It appears that the decline in Hsp induction and 
the increase in denatured proteins, including damage to chaperones, 
all contribute to the overall decline in chaperone capacity with age, 
and these may lead to an increase in cellular senescence, apoptosis or 
necrosis, depending on the degree of damage and the balance between 
damaged proteins and available free functional chaperones [19]. 

Insulin Pathway and Aging
Parallel to Hsps, dietary restriction (DR) has also emerged as one 

of the major factors involved in aging and longevity. Dietary restriction 
is the condition of reduced nutrient intake that extends an organism’s 
life span by altering the pattern of energy utilization in the body, and 
allowing organisms to survive under stress. Insulin signalling pathway 
is one of the key nutrient sensors in the body, which plays critical role 
in mediating longevity in dietary restriction stress condition [20,21].

Insulin/Insulin-like growth factor-1(IGF-1) signalling pathway is 
conserved across the phyla in worms, flies, mice and humans [22]. This is 
one of the most prominent and best characterized regulatory pathways 
that influence life span of organisms. The discovery that mutations in 
the daf-2 gene, which encodes an insulin/IGF-1 receptor homologue, 
dramatically increase the life span in C. elegans led to the investigation 
of similar genes in the Drosophila [23,24]. It was also demonstrated that 

Insulin/IGF-1 receptor negatively regulates downstream transcription 
factors, FOXO/DAF-16, SKN-1/NRF and HSF-1 [22]. Insulin receptor/
DAF-2 activates AKT kinase and phosphorylates DAF-16 and SKN-
1, and prevents its nuclear localization, which in turn inhibits the 
expression of downstream target genes, such as sHsps [25]. In contrast, 
reduced insulin signal hyper-activates DAF-16/FOXO and HSF-1, 
therefore altering the transcriptome of downstream target genes, 
resulting in degradation of toxic protein aggregates and refolding of 
denatured proteins, finally helping in developing increased stress 
tolerance and delayed aging [26]. Similarly, mutations in the gene 
encoding the insulin-like receptor (InR) in Drosophila also resulted 
in life span extension, corroborating the role of insulin or insulin-like 
signalling pathway in regulating longevity [27].

Oxidative Stress/Mitochondrial Dysfunction and Aging
The process of aging that is brought about due to the accumulation 

of oxygen-free radicals with time falls under the class of damage-
induced aging. Oxidative stress hypothesis of aging accounts for 
one of the most primitive, but prominent theories of aging [28]. 
Mitochondrial dysfunction or oxidative stress is common in both aging 
and neurodegenerative diseases [29]. During aging, mitochondrial 
dysfunction results in increased reactive oxygen species (ROS) and 
reduced antioxidants causing cellular oxidative damage, which is 
also believed to function as a key factor for triggering pathogenesis 
in neurodegenerative diseases [29]. Studies have showed that 
manipulating the mitochondrial electron transport chain (ETC) can 
extend longevity in organisms [28]. 

Finding Link Between Aging and Neurodegenerative 
Diseases

Neurodegenerative diseases are types of protein conformational 
disorders characterized by late onset, accumulation of mis-folded 
proteins at the intracellular and extracellular levels [30]. Similarly, 
aging is a universal phenomenon again characterized by accumulation 
of damaged macromolecules at the molecular, cellular and organismal 
level exponentially. Scientific advance in aging research and the 
development of molecular tools enable us to address the question, 
whether aging related changes allow protein aggregation in toxic 
condition, and become susceptible to initiate diseases late in life. It also 
appears that many of the aging related changes are sufficiently fatal to 
trigger early onset of complex diseases [30]. Several studies suggested 
a mechanistic link between aging, toxic protein aggregation and onset 
of neurodegenerative disorders, and therefore, it raises the prospects 
to prevent accumulation of toxic protein aggregates by slow aging 
process, to postpone onset of neurodegenerative diseases and alleviate 
their disease symptoms that once have emerged [31]. 

Since prevention of protein aggregation holds the key for the 
cure of neurodegenerative disorders, subsequent in-depth functional 
catheterization of chaperones seems to explain the mysterious link 
between neurodegeneration and aging, which in turn could be helpful 
in the management of this fatal illness. Amelioration of Poly (Q) 
induced neurodegenerative phenotypes by modulating the expression 
of various Hsps in human disease models strongly supports the above 
hypothesis [32].

Concluding Remarks and Future Perspectives
Growing evidences suggest that endocrine/neuroendocrine 

signalling may play a major role in influencing the life span in humans, 
which is not surprising because many other age-specific developmental 
programs, such as puberty and menopause are hormonally controlled. 
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Moreover, several recent findings indicate a direct influence of 
neuroendocrine pathways upon longevity and aging in vertebrates and 
invertebrates [33]. 

Although it is increasingly clear now that aging is regulated by 
explicit signaling pathways, however, whether the influence of these 
signaling pathways is applicable to an organism “as whole” or regulates 
the aging phenomenon by targeting specific tissues, which then affect 
aging systemically remains to be determined. Taken together, exactly 
how these various pathways/factors control life span and influence 
aging is still a “great scientific mystery”. The dramatic progress made in 
recent years utilizing various model organisms has demonstrated the 
feasibility of decoding this mystery, and further studies are expected to 
reveal insights of the biological aging and longevity. 
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