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ABSTRACT
Objective: This study aims to comprehensively explore the comorbidity mechanisms of eczema and Atopic Dermatitis 
(AD) through the integrated application of Weighted Gene Co-Expression Network Analysis (WGCNA), machine 
learning, and bioinformatics methods. The goal is to identify potential therapeutic targets and provide a profound 
understanding of these two skin conditions.

Methods: We conducted Weighted Gene Co-Expression Network Analysis (WGCNA) and Differential Gene Expression 
(DEGs) analysis using the Gene Expression Omnibus (GEO) databases GSE6012, GSE14550, GSE32924, and 
GSE120721. By intersecting the results, we identified 22 genes that are commonly expressed in eczema and atopic 
dermatitis. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), disease prediction, and Protein-Protein Interaction (PPI), were performed on these genes. Subsequently, key hub 
genes— CCL18, GZMB, and IRF7—were selected using random forest in machine learning and the cytohubba function 
in Cytoscape. We further explored the relationships between these three genes and immune cells through CIBERSORT 
and Single-Sample Gene Set Enrichment Analysis (ssGSEA), establishing a mRNA-miRNA-lncRNA ceRNA regulatory 
network.

Results: Enrichment analysis revealed that these 22 genes are predominantly involved in processes such as cytokine-
mediated signaling pathways, leukocyte migration, leukocyte chemotaxis, neutrophil chemotaxis, and humoral immune 
responses. Additionally, they are associated with various skin-related diseases, including atopic dermatitis. Machine 
learning and network analysis confirmed CCL18, GZMB, and IRF7 as key genes. Immunoinfiltration analysis further 
elucidated the associations of these genes with different immune cells. 

Conclusion: The results of this study suggest that CCL18, GZMB, and IRF7 may serve as potential biomarkers for eczema 
and atopic dermatitis, holding significant clinical prospects. These genes play vital roles in various biological processes and 
immune regulation, providing robust support for unraveling the comorbidity mechanisms of these two skin conditions. 
This discovery offers essential clues for future exploration of therapeutic targets and clinical interventions, potentially 
advancing research in the treatment of eczema and atopic dermatitis.

Keywords: Eczema; Atopic dermatitis; Bioinformatics; Weighted Gene Co-Expression Network Analysis; Machine 
learning

INTRODUCTION

Eczema is a common skin disorder and is classified as an allergic 
disease. The occurrence of eczema is influenced by various internal 
and external factors, with its primary clinical features including 
intense pruritus and dermatological manifestations [1]. For patients 
with severe inflammation, symptoms may spread throughout the 
body.

Due to the relatively slow progression of eczema, exposure 

to sensitizing factors during treatment may lead to recurrent 
outbreaks [2]. Atopic Dermatitis (AD) is a chronic inflammatory 
skin disease affecting millions worldwide, characterized by intense 
itching and eczematous lesions in typical anatomical locations [3-
4]. Both eczema and atopic dermatitis fall within the classification 
of chronic dermatological conditions [5]. In clinical settings, these 
terms are occasionally employed interchangeably owing to their 
shared symptoms; however, it is important to note that Atopic 
Dermatitis is technically a subset of eczema. Atopic Dermatitis 
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MATERIALS AND METHODS

Chip data collection and workflow

Utilizing the GEO database for the extraction of gene expression 
profiles. GSE6012 comprises gene expression profiles from 20 
samples, including 10 samples from patients with active atopic 
dermatitis and 10 healthy control skin samples. GSE57225 includes 
62 samples, consisting of 17 healthy control skin samples, 23 
samples from eczema-affected skin, and 22 samples from psoriasis-
affected skin. GSE32924 contains 33 samples, encompassing 8 
healthy control skin samples and 25 samples from atopic dermatitis-
affected skin.

GSE120721 comprises 52 samples, including 22 healthy control 
skin samples and 30 samples from atopic dermatitis-affected skin. 
GSE175438 consists of 31 samples, with 10 healthy control skin 
samples, 12 samples from atopic dermatitis-affected skin, and 12 
samples from psoriasis-affected skin. Lastly, GSE168694 includes 8 
samples, comprising 4 normal Peripheral Blood Mononuclear Cell 
(PBMC) samples and 4 atopic dermatitis PBMC samples. 

Bioinformatics analysis

Differential gene expression analysis: Download normalized 
expression matrices of microarray data from four datasets and 
represent them using boxplots (created with the boxplot function). 
Then, annotate the probes using the annotation files from the 
respective datasets. Validate the reproducibility of the data through 
Principal Component Analysis (PCA) and create a PCA plot using 
the 'plot' function in R. Utilize the 'limma' package in R to identify 
differentially expressed genes (DEGs) by considering genes with 
adjusted p-values less than 0.05 and absolute Fold Change (FC) 
greater than 1. Generate heatmaps, volcano plots, and boxplots 
using the 'heatmap,' 'ggplot2,' and 'plot' functions in R software 
(version 4.2.1). 

Weighted gene co-expression network analysis 

WGCNA is a vital tool in bioinformatics analysis and has been 
widely employed for the analysis of associations between traits 
and genes [8]. We employed the R software package "WGCNA" 
to construct co-expression networks using gene expression 
data from GSE6012, GSE57225, GSE32924, and GSE120721 
as input, with traits being either eczema/normal or atopic 
dermatitis/normal. Initially, sample clustering was performed 
using the hclust function, removing outlier samples, with distance 
calculated using the "method=average" parameter. Subsequently, 
an optimal soft threshold was determined to obtain a scale-free 
network. The dynamic tree- cutting algorithm was then applied to 
segment modules, and modules associated with eczema or atopic 
dermatitis were identified using Pearson correlation analysis. To 
comprehensively consider genes related to eczema and atopic 
dermatitis as identified by WGCNA and DEGs, a Venn diagram 
was employed to analyze common genes across the four datasets. 
In the end, a set of 22 genes associated with both conditions was 
identified.

Protein-Protein Interaction Networks (PPI) 

The Protein-Protein Interaction (PPI) network among the 22 genes 
was visualized using the STRING database. Utilizing the cytohubba 

is associated with International Classification of Diseases, Ninth 
Edition (ICD-9) code 691.8 and International Classification 
of Diseases, Tenth Edition (ICD-10) code L20.x. However, the 
term eczema is associated with ICD-9 code 692.9 and ICD-10 
code L30.9 [6]. The pathogenesis of these skin diseases is highly 
complex, lacking specific therapeutic approaches5, involving 
aspects such as immune regulation, inflammatory responses, 
epidermal dysfunction, and skin microbiome abnormalities [7]. 
Aberrant regulation of gene expression at the biological level has 
emerged as a pivotal determinant in the pathogenesis of eczema 
and Atopic Dermatitis. In recent times, the extensive utilization 
of bioinformatics techniques has facilitated a more exhaustive 
and organized comprehension of the molecular mechanisms 
underpinning these afflictions.

By employing a combination of Weighted Gene Co-Expression 
Network Analysis (WGCNA) and machine learning methodologies, 
our objective is to elucidate the underlying co-morbid mechanisms 
associated with eczema and atopic dermatitis, while exploring 
potential therapeutic targets. This research trajectory not only 
enhances our comprehension of the pathogenesis of these 
diseases, but also furnishes substantial bioinformatics backing 
for forthcoming treatment approaches. By employing a rigorous 
bioinformatics analysis, our study aims to elucidate the genetic 
associations between eczema and Atopic Dermatitis, thereby 
enhancing our comprehension of these prevalent dermatological 
disorders and facilitating further investigations into treatment 
modalities. The specific workflow diagram is shown in Figure 1.

Figure 1: The pathways of bacterial translocation through the 
Gastrointestinal Tract (GIT) epithelium. Note: In healthy individuals, 
antimicrobial molecules as part of the innate and immune adaptative 
response are secreted from intestinal epithelial cells and paneth cells and 
kill enteric bacteria. Drug suppresses the expression of these molecules 
resulting in intestinal bacterial overgrowth and dysbiosis. This might 
contribute to bacterial translocation observed after drug that also exert 
a direct effect on the intestinal microflora. There are five pathways for 
bacterial translocation: 1) Endocytosis by enterocytes; 2) Absorption 
(transcytosis) by M cells; 3) Passage by persorption through gaps left in 
the epithelium after the loss of enterocytes (apoptosis); 4) Paracelullar 
translocation; 5) Transcellular translocation.
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tests were two-sided, with a significance threshold set at p<0.05. 
The levels of significance are denoted as follows: *p<0.05, **p<0.01, 
***p<0.001.

RESULTS

Selection of genes associated with eczema and atopic 
dermatitis

The expression matrices of the GSE6012, GSE57225, GSE32924 
and GSE120721 datasets were normalized, and the distribution 
trends in the boxplots were generally linear. To assess the intra-
group data repeatability, Principal Component Analysis (PCA) 
analysis was performed on the four datasets. The results indicated 
good repeatability for all datasets except GSE32924 (Figures 2A-
2H).

After filtering based on the adjusted threshold |log2(FC)|>1 
and p-value<0.05, 566 differentially expressed genes Diethylene 
glycol (DEGs) were identified in the GSE6012 dataset (323 
upregulated, 243 downregulated), 907 DEGs in the GSE57225 
dataset (539 upregulated, 368 downregulated), 901 DEGs in the 
GSE32924 dataset (498 upregulated, 403 downregulated), and 
1094 DEGs in the GSE120721 dataset (562 upregulated, 532 
downregulated). The volcano distribution plots of DEGs in these 
four datasets are shown in (Figures 3A-3L). Additionally, WGCNA 
was conducted on these four datasets, and display the hierarchical 
clustering dendrograms of genes and the heatmap of gene modules 
correlated with clinical features, respectively. The dynamic tree-
cutting algorithm was employed to identify gene modules in four 
different datasets, namely GSE6012, GSE57225, GSE32924, and 
GSE120721, resulting in the identification of 91, 29, 24, and 12 
gene modules. Modules exhibiting a correlation coefficient (R) 
greater than 0 and a p-value less than 0.05 in were deemed to be 
associated with eczema and atopic dermatitis. Consequently, the 
genes encompassed within these modules were considered to be 
implicated in the pathogenesis of eczema and atopic dermatitis. 

plugin in Cytoscape software, we obtained the PPI network for the 
top 10 hub genes, highlighting key genes within the interaction 
network.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG)

Conducting Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses 
using R software, where corrected p-values less than 0.05 indicate 
statistically significant differences. The prediction of disease 
association for the 22 genes is being performed through the 
Metascape website.

Machine learning for selecting key genes 

In the realm of machine learning, the Random Forest (RF) model 
was employed, utilizing the randomForest function within the 
random forest R package [9]. Gene selection was conducted on 
four datasets, namely GSE6012, GSE57225, GSE32924, and 
GSE120721. Subsequently, an intersection analysis was performed 
with the top 10 hub genes obtained from the cytohubba plugin 
in Cytoscape software. Ultimately, three key genes CCL18, GZMB, 
and IRF7 were identified.

Immune infiltration analysis 

The Cell-type Identification by Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT) algorithm was employed to calculate 
the proportions of immune cell types, including T cell subtypes, B 
cells, and macrophages, in each sample [10].

Subsequently, the ssGSEA algorithm from the R package "GSVA" 
was utilized to assess the immune activity of each sample. Following 
the completion of CIBERSORT and ssGSEA calculations, 
correlation analyses among immune cell types were conducted, 
and differences in immune infiltration between two groups were 
analyzed. These analyses aimed to investigate the associations 
between immune infiltration and the three key genes.

Construction of an lncRNA-Associated ceRNA Regulatory 
Network

Utilizing TargetScan 8.0, miRWalk, and Tarbase v8 databases, 
miRNA prediction was performed for CCL18, GZMB, and IRF7. 
To enhance accuracy, an intersection analysis was carried out with 
the upregulated miRNAs from the GSE175438 dataset, resulting 
in a more consistent miRNA set. Subsequently, the obtained 
miRNA set underwent enrichment analysis using the miEAA 
database, ultimately identifying 11 miRNAs participating in all 
pathways. Employing the miRNet 2.0 database, lncRNA prediction 
was conducted for these 11 miRNAs. To enhance accuracy, the 
predicted lncRNAs were intersected with the upregulated lncRNAs 
from the GSE168694 dataset, culminating in the construction of 
the final ceRNA regulatory network involving lncRNA-miRNA-
mRNA. 

Statistical analysis 

All statistical analyses were conducted using R software (version 
4.1.3). The Wilcoxon test was employed to compare differences 
in continuous variables, and the Pearson correlation coefficient 
was utilized to assess the correlation of continuous variables. Data 
visualization was performed using the "ggplot2" package in R. All 

Figure 2: A-D) The normalized expression matrices; E-H) Principal 
component analysis (PCA) plots of the GSE6012, GSE32924, GSE57225 
and GSE120721 datasets.
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Figure 3: Illustrates the identification of Diethylene Glycol (DEGs) in eczema and atopic dermatitis, as well as the identification of genes associated 
with eczema and atopic dermatitis. Note: A-D) Display volcano plots depicting DEGs in eczema or atopic dermatitis compared to normal samples 
across the four datasets; E-H) Show gene clustering dendrograms for GSE6012, GSE57225, GSE32924, and GSE120721, respectively; I-L) Depict 
heatmaps illustrating the correlation between gene modules and clinical features in GSE6012, GSE57225, GSE32924, and GSE120721, respectively.

Enrichment analysis and disease prediction of core genes 
associated with eczema and atopic dermatitis

Following the analysis of Differentially Expressed Genes (DEGs) 
and Weighted Gene Co-Expression Network Analysis (WGCNA) 
on the GSE6012, GSE57225, GSE32924, and GSE120721 
datasets, we obtained a gene set associated with eczema and atopic 
dermatitis. By intersecting the upregulated genes from DEGs in 
the four datasets and genes related to eczema and atopic dermatitis 
from WGCNA analysis, we finally identified a set of 22 genes. 
The chromosomal distribution of these 22 genes is depicted. The 
expression heatmaps for these 22 genes in GSE6012, GSE57225, 
GSE32924, and GSE120721 are presented in (Figure 4A-4L). To 
explore potential interactions among these genes, we constructed 
a protein-protein interaction (PPI) network for the 22 genes in the 
string database, and the results of the PPI network are illustrated.

Enrichment analyses, including Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG), were performed 
on these 22 genes. The results indicated that the most enriched 
pathways in GO activities included cytokine- mediated signaling 
pathways, leukocyte migration, leukocyte chemotaxis, bone 
marrow leukocyte migration, cell killing, granulocyte migration, 
granulocyte chemotaxis, humoral immune response, negative 
regulation of neutrophil apoptosis, and regulation of leukocyte 
apoptotic process. In the KEGG analysis, these 22 genes were 
involved in cytokine-cytokine receptor interaction, viral protein 
interaction with cytokine and cytokine receptor pathway. Disease 
prediction using the Metascape database revealed associations with 
various conditions such as skin injuries, inflammation, dermatitis, 

inflammatory skin diseases, pemphigus vulgaris, atopic dermatitis, 
and lichen planus. 

Machine learning and network analysis unveil key genes in 
eczema and atopic dermatitis 

Through the integration of DEGs and WGCNA, a set of 22 genes 
was identified. Subsequently, machine learning techniques were 
employed to perform random forest analysis on the expression 
profiles of these genes in four datasets (GSE6012, GSE57225, 
GSE32924, and GSE120721) (Figures 5A-5N). Additionally, the 
cytohubba plugin in Cytoscape software was utilized to determine 
the top 10 hub gene. By intersecting the genes selected by random 
forest with the top 10 hub genes, three key genes, namely CCL18, 
GZMB, and IRF7, were ultimately identified.

Illustrate the gene expression group comparison plots for these 
three genes in GSE6012, GSE57225, GSE32924, and GSE120721. 
Clearly, the expression of these three genes is significantly higher 
in the eczema or atopic dermatitis groups compared to the normal 
group (p<0.05). The ROC curves created using the data from the 
eczema or atopic dermatitis groups and the normal group. The 
results indicate that CCL18 has an AUC greater than 0.85 in all 
datasets except GSE120721. GZMB has an AUC greater than 
0.92 in GSE6012 and GSE57225, and an AUC greater than 0.7 
in GSE32924 and GSE120721. Additionally, IRF7 has an AUC 
greater than 0.85 in all four datasets. In summary, these three genes 
demonstrate significant diagnostic and predictive value in eczema 
and atopic dermatitis. 
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Figure 4: Enrichment analysis and disease prediction of core genes associated with eczema and atopic dermatitis. Note: A) Venn diagram illustrating 
the intersection of upregulated genes in GSE6012, GSE57225, GSE32924, GSE120721 and genes related to eczema and atopic dermatitis identified 
in GSE6012, GSE57225, GSE32924, GSE120721 through WGCNA; B) Circular plot showing the chromosomal locations of the 22 genes; C) 
Protein-Protein Interaction (PPI) network of the 22 genes. D-G) Heatmaps depicting the gene expression patterns of the 22 genes in GSE6012, 
GSE57225, GSE32924, GSE120721; H-J) GO enrichment analysis results, including Biological Processes (BP), Cellular Components (CC), and 
Molecular Functions (MF); K) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis plot; L) Disease prediction results for the 22 
genes using the Metascape database.

Figure 5: Key genes in eczema and atopic dermatitis revealed by random forest and network analysis. Note: (A-D) Random forest analysis of 22 genes 
in GSE6012, GSE57225, GSE32924, and GSE120721, respectively; (E) Top 10 hub genes obtained using the cytohubba plugin in Cytoscape through 
the Matthews Correlation Coefficient (MCC) algorithm; (F) Venn diagram depicting the intersection of genes selected by random forest and the top 
10 hub genes; (G-J) Receiver-Operating Characteristic Curve (ROC) curves for CCL18, GZMB, and IRF7 in GSE6012, GSE57225, GSE32924, and 
GSE120721; (K-N) Expression comparison between the eczema or atopic dermatitis groups and the normal group for CCL18, GZMB, and IRF7 in 
GSE6012, GSE57225, GSE32924, and GSE120721, respectively. 
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and GZMB showed a positive correlation with initial CD4+ T cells 
and a negative correlation with plasma cells. In atopic dermatitis, 
these three genes exhibited a positive correlation with activated 
memory CD4+ T cells and a negative correlation with regulatory T 
cells, activated NK cells, and neutrophils.

Simultaneously, this study utilized the ssGSEA algorithm 
to calculate the relative abundance of various immune cell 
types in eczema and atopic dermatitis, aiming to obtain more 
comprehensive results. Display the proportions of 24 immune cells 
in each eczema or atopic dermatitis sample from the GSE57225 
and GSE120721 datasets. Histograms of immune cell content 
in GSE57225 and GSE120721 are shown in (Figures 7A-7H). In 
both datasets, the eczema and atopic dermatitis groups exhibited 
higher proportions of activated dendritic cells, dendritic cells, NK 
CD56dim cells, T helper cells, Th1 cells, and Th2 cells compared to 
the normal group. Illustrate the correlations between immune cells 
in the GSE57225 and GSE120721 datasets. In eczema and atopic 
dermatitis, activated dendritic cells showed positive correlations 
with dendritic cells, immature dendritic cells, neutrophils, NK 
CD56dim cells, T cells, T helper cells, Th1 cells, and Th2 cells, 
while exhibiting negative correlations with NK cells. Subsequently, 
Pearson correlation coefficients revealed relationships between 
immune cell abundance and the expression of key genes. The 
results indicated that, in eczema and atopic dermatitis, the three 
key genes showed positive correlations with activated dendritic 
cells, cytotoxic cells, dendritic cells, neutrophils, NK CD56dim 
cells, T cells, and plasmacytoid dendritic cells. Additionally, in 
eczema, the three genes exhibited a positive correlation with Th2 
cells, while in atopic dermatitis, GZMB and IRF7 showed a positive 
correlation with Th2 cells.

Immune infiltration analysis

By comparing the differences between eczema or atopic dermatitis 
tissues and control groups, we employed the CIBERSORT 
algorithm and Gene Set Enrichment Analysis (ssGSEA) algorithm 
to delve into the comprehensive landscape of immune infiltration 
in eczema or atopic dermatitis. In samples from GSE57225 and 
GSE120721, we illustrated the proportions of 22 immune cells, as 
shown in (Figures 6A-6H). Histogram distributions of immune cell 
contents are visible. In GSE57225, the content of T cells CD4+ 
naive, activated memory CD4+ T cells, and M1 macrophages in 
the eczema group significantly increased compared to the normal 
group, while the content of plasma cells and resting mast cells 
decreased. In GSE120721, the atopic dermatitis group exhibited 
a higher proportion of activated memory CD4+ T cells, while the 
proportions of regulatory T cells, activated NK cells, and resting 
mast cells were lower. Demonstrate the correlations between 
immune cells in the GSE57225 and GSE120721 datasets. In 
GSE57225, activated memory CD4+ T cells showed a positive 
correlation with initial CD4+ T cells, CD8+ T cells, and resting 
dendritic cells, and a negative correlation with resting mast cells. 
In the GSE120721 dataset, activated memory CD4+ T cells were 
positively correlated with M2 macrophages and γδT cells, and 
negatively correlated with neutrophils, resting mast cells, M0 
macrophages, activated NK cells, regulatory T cells, plasma cells, 
and memory B cells. Additionally, Pearson correlation coefficients 
revealed relationships between immune cell abundance and hub 
gene expression. In eczema, the three genes showed a positive 
correlation with activated memory CD4+ T cells and a negative 
correlation with resting mast cells. Furthermore, GZMB and IRF7 
showed a positive correlation with M1 macrophages, while CCL18 

Figure 6: Immunoinfiltration analysis using the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm. 
Note: A-E) Proportions of 22 immune cells in each sample of eczema or atopic dermatitis from GSE57225 and GSE120721 datasets; B-F) Histograms 
depicting the distribution of immune cell content in GSE57225 and GSE120721 datasets; C-G) Correlations among immune cells in GSE57225 and 
GSE120721 datasets; D-H) Correlation analysis between the expression of three key genes and immune cell content in GSE57225 and GSE120721 
datasets.
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Single-Cell transcriptomic landscape and 
immunohistochemical expression patterns of CCL18, 
IRF7, and GZMB in atopic dermatitis and eczema

To deepen our understanding of atopic dermatitis and eczema, 
we explored the ADGSE197023 dataset, enabling us to assess the 
expression of the three genes of interest at single-cell resolution. 
Initially, the cell population was classified into six clusters. 
Subsequently, these clusters were categorized into three distinct 
cellular populations based on the expression of marker genes: 
fibroblasts, keratinocytes, and suprabasal keratinocytes. We 
found that CCL18 and IRF7 were expressed in all three cell types, 
while GZMB was primarily expressed in fibroblasts. Further, we 
conducted pseudotime analysis using Monocle 2, which plotted a 
tree-like developmental trajectory, illustrating the different cellular 
developmental states. The developmental trajectories of fibroblasts 
and suprabasal keratinocytes were similar, being present in the 
early and middle stages of the trajectory and decreasing in the 
later stages. Keratinocytes were present in the early stages of the 
trajectory, however, as the trajectory progressed towards the middle 
stages, this cell type diminished, only to increase again in the 
later stages (Figures 9A-9K). To validate the findings from single-
cell analysis, we performed immunohistochemical experiments to 
assess the protein expression levels of CCL18, IRF7, and GZMB in 
control (NC), eczema, and AD tissues. The results indicated that, 
compared to the control group, the protein expression levels of 
CCL18, IRF7, and GZMB were all highly expressed in both eczema 
and AD tissues. 

Construction of mRNA-miRNA-lncRNA regulatory 
networks associated with eczema and atopic dermatitis

Using TargetScan 8.0, miRWalk, and Tarbase v8 databases, 
miRNA prediction was performed for CCL18, GZMB, and IRF7. 
Illustrates the network relationships between these three key genes 
and miRNAs. Subsequently, differential analyses were conducted 
on GSE175438 and GSE168694. To enhance prediction accuracy, 
the miRNAs predicted for the three genes were intersected with the 
upregulated miRNAs in the GSE175438 dataset, obtaining a more 
consistent set of miRNAs. Then, using the miEAA database, an 
enrichment analysis was carried out on the obtained miRNA set, 
revealing their involvement in various pathways such as fatty acid 
biosynthesis, leukocyte transendothelial migration, chemokine 
signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling 
pathway, B cell receptor signaling pathway, MAPK signaling 
pathway, Th1 and Th2 cell differentiation, Tumor Necrosis Factor 
(TNF) signaling pathway, cytokine-cytokine receptor interaction, 
Toll-like receptor signaling pathway, NF-κB signaling pathway, 
T cell receptor signaling pathway, and Th17 cell differentiation 
(Figures 8A-8H).

Within these pathways, it was discovered that 11 miRNAs were 
involved in all of them. Through the miRNet 2.0 database, 
lncRNA prediction was performed for these 11 miRNAs, and eight 
miRNAs were predicted to target lncRNAs. To enhance accuracy, 
the predicted lncRNAs were intersected with the upregulated 
lncRNAs in the GSE168694 dataset, completing the construction 
of the final mRNA-miRNA- lncRNA ceRNA regulatory network.

Figure 7: Immunoinfiltration analysis using the Gene Set Enrichment Analysis (ssGSEA) algorithm. Note: A-E) Proportions of 24 immune cells in 
each sample of eczema or atopic dermatitis from GSE57225 and GSE120721 datasets; B-F) Histograms depicting the distribution of immune cell 
content in GSE57225 and GSE120721 datasets; C-G) Correlations among immune cells in GSE57225 and GSE120721 datasets; D-H) Correlation 
analysis between the expression of three key genes and immune cell content in GSE57225 and GSE120721 datasets.
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Figure 8: Construction of the ceRNA Regulatory Network for the Three Key Genes - CCL18, GZMB, and IRF7. Note: (A) Network diagram depicting 
the relationships between the three key genes and miRNAs; (B-C) Volcano plots illustrating the differential analysis results for GSE175438 and 
GSE168694 datasets; (D-F) Venn diagrams showing the intersection between the predicted RiboNucleic Acid (miRNAs) and the upregulated miRNAs 
in the GSE175438 dataset; (G) Results of the enrichment analysis for the miRNAs after the Venn intersection; (H) Sankey diagram illustrating the 
mRNA- miRNA-lncRNA ceRNA regulatory network after the final construction.

Figure 9: Single-Cell analysis and validation in Atopic dermatitis and eczema. Note: (A) Cell markers for clusters’annotation; (B) Cell clusters for 
GSE197023 of AD samples; (C) Uniform Manifold Approximation and Projection (UMAP) visualization of all cells in 6 clusters; (D-F) Expression of 
CCL18, IRF7 and GZMB in 3 subpopulations of cells; (G) Monocle-based pseudotime trajectory colored by pseudotime; (H) Monocle 2 Pseudotime 
Trajectory Analysis of Atopic Dermatitis Cells; (I-K) Immunohistochemical analysis of CCL18, IRF7, and GZMB expression in atopic dermatitis and 
eczema; (G) Monocle-based pseudotime trajectory colored by pseudotime; (H) Monocle 2 Pseudotime Trajectory Analysis of Atopic Dermatitis Cells; 
(I-K) Immunohistochemical analysis of CCL18, IRF7 and GZMB expression in atopic dermatitis and eczema.

datasets from the Gene Expression Omnibus (GEO), including 
GSE6012, GSE14550, GSE32924, and GSE120721, we conducted 
Weighted Gene Co-expression Network Analysis (WGCNA) and 
Differential Expression Genes (DEGs) analysis. By intersecting the 
results of these analyses, we successfully identified 22 genes that 
were co-expressed in both eczema and atopic dermatitis. These 
genes underwent Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) functional enrichment analysis, 

DISCUSSION

This study employed an integrative approach combining Weighted 
Gene Co-expression Network Analysis (WGCNA), machine 
learning, and bioinformatics methods to comprehensively dissect 
the comorbid mechanisms of eczema and atopic dermatitis. The 
goal was to identify potential therapeutic targets and provide a 
deeper understanding of these two skin conditions. Selecting 
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with resting mast cells. In atopic dermatitis, these three genes 
are positively correlated with activated memory CD4+ T cells and 
negatively correlated with regulatory T cells, activated NK cells, and 
neutrophils. Previous studies have indicated that inflammatory 
skin diseases, such as psoriasis, atopic dermatitis, and contact 
dermatitis, involve the recruitment of T cells [17]. In patients with 
atopic dermatitis, CCL18 binds to skin-homing CLA+ memory T 
cells, triggering the migration of human memory T cells in vivo. 
Further analysis using the ssGSEA algorithm showed a significant 
increase in the proportions of activated dendritic cells, dendritic 
cells, NK CD56dim cells, T helper cells, Th1 cells, and Th2 cells in 
eczema and atopic dermatitis. Literature studies also confirm the 
existence of pathogenic Th2 cell subsets in the peripheral blood 
of patients with atopic dermatitis [18], and the excessive activation 
of Th2 cells often manifests as allergic symptoms such as rhinitis, 
atopic dermatitis, and asthma [19], emphasizing the key role of Th2 
cells in the pathological development of atopic dermatitis [20]. In 
eczema, the three genes are positively correlated with Th2 cells, 
while in atopic dermatitis, GZMB and IRF7 are positively correlated 
with Th2 cells. These findings further support the close association 
between the three key genes and eczema and atopic dermatitis.

CONCLUSION

The incorporation of single-cell transcriptomic analysis in our 
study offers a refined perspective on the cellular heterogeneity 
within eczema and atopic dermatitis lesions. The distinct 
cellular clusters identified, along with their specific expression 
patterns for CCL18, IRF7, and GZMB, provide a foundation for 
understanding the cellular dialogue in these conditions. The 
pseudotime trajectory analysis elucidates the dynamic changes in 
cellular populations, suggesting a temporal sequence in disease 
progression. The immunohistochemical validation of these genes 
strengthens the link between molecular signatures and observable 
protein expression in the skin lesions. The increased expression of 
CCL18, IRF7, and GZMB in eczema and AD tissues, as compared 
to controls, underscores their potential as diagnostic markers 
and therapeutic targets. Our findings suggest that the cellular 
and molecular alterations captured through single-cell analysis 
and corroborated by immunohistochemistry are pivotal to the 
pathogenesis of eczema and AD. These genes may represent critical 
nodes in the inflammatory networks driving these diseases, offering 
targets for intervention. The trajectory analysis hints at a temporal 
regulation of key cellular processes, which could inform stage-
specific therapeutic strategies. Targeting these genes at particular 
stages of the disease may prove more efficacious than broad 
immunosuppression. While our study provides valuable insights, 
future research should focus on the functional implications of the 
observed gene expression patterns. In-depth cellular studies are 
needed to determine the exact roles of CCL18, IRF7, and GZMB in 
disease pathogenesis.
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disease prediction, and Protein-Protein Interaction (PPI) analysis. 
Random Forest in machine learning and the cytohubba plugin 
in Cytoscape software further filtered out three key hub genes: 
CCL18, GZMB, and IRF7. The application of CIBERSORT 
and ssGSEA for immune infiltration analysis revealed the close 
relationship of these three genes with immune cells. A mRNA-
miRNA-lncRNA ceRNA regulatory network was established. 
Enrichment analysis results indicated that these 22 genes are 
involved in various biological processes such as cytokine-mediated 
signaling pathways, leukocyte migration, leukocyte chemotaxis, 
neutrophil chemotaxis, and humoral immune responses, showing 
associations with multiple skin-related diseases, including atopic 
dermatitis. Consistency between machine learning and network 
analysis confirmed the essential role of CCL18, GZMB, and IRF7. 
Further immune infiltration analysis revealed the associations of 
these three genes with different immune cell types.

The comprehensive findings of this study suggest that CCL18, 
GZMB, and IRF7 may serve as potential biomarkers for eczema 
and atopic dermatitis, holding significant clinical promise. CCL18, 
belonging to the chemokine family, has been reported to exhibit 
highly induced expression in the lesional skin of atopic dermatitis 
patients [11,12]. Studies, including research by Satoru Sanada et 
al., have confirmed the involvement of CCL18 in the pathogenesis 
of diseases such as cystic fibrosis, rheumatoid arthritis, and atopic 
dermatitis [13]. GZMB, a serine protease with cytotoxic and 
immune-regulatory functions, has been found to have elevated 
levels in the plasma of atopic dermatitis patients. Moreover, in 
the skin lesions of atopic dermatitis patients, the expression of 
GZMB in CD4+ and CD8+ T cells is significantly higher than 
in healthy skin. The mRNA expression of GZMB is notably 
increased in Th2- polarized CD4+ T cells and IL-4-activated CD4+ 
T cells, with histamine and its H2 receptor agonist significantly 
enhancing GZMB levels [14]. Interferon Regulatory Factor 7 
(IRF7), a member of the interferon regulatory transcription factor 
family, plays a crucial role in various biological processes such as 
inflammation, apoptosis, and immune response. Studies indicate 
that IRF7 is upregulated in type 2 lymphocytes during allergic 
inflammatory processes, and its deficiency leads to attenuation 
[15]. Specifically, research by Cohen. reported the regulatory 
role of IRF7 in the phenotypic transition from pro-inflammatory 
macrophages to anti-inflammatory macrophages (M1 to M2), a 
process negatively regulated by the transforming growth factor-β1 
pathway [16]. Chenyang et al., through external dataset validation 
and immunohistochemical analysis, identified five central genes, 
including IRF7, as potential diagnostic and therapeutic biomarkers 
for atopic dermatitis.

Through immune infiltration analysis using CIBERSORT and 
ssGSEA algorithms, we delved into the immune cell landscape 
in eczema and atopic dermatitis tissues. In eczema, a significant 
increase in initial CD4+ T cells, activated memory CD4+ T cells, and 
M1 macrophages was observed, while the content of plasma cells 
and resting mast cells was lower. In contrast, in atopic dermatitis, 
the proportion of activated memory CD4+ T cells was higher, while 
regulatory T cells, activated NK cells, and resting mast cells were 
relatively lower. These differences underscore the immunological 
heterogeneity at the cellular level in eczema and atopic dermatitis.

Regarding the association between key genes and immune cells, we 
found that in eczema, the three key genes are positively correlated 
with activated memory CD4+ T cells and negatively correlated 
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