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Chemokines are peptides that are secreted by epithelial cells, 
stromal endothelial cells and fibroblasts, and leukocytes, which attract 
and actively recruit leukocytes to areas of inflammation. They are 
recruited to fight infection as a host response to foreign organisms, and 
also have been shown to play a role not only in host response to tumor 
and cancer-related inflammation, but also a role in promoting cancer 
metastases and invasion [1,2].

In this Special Issue of the Journal of Cell Science and Therapy, four 
articles on cytokine research are highlighted, and their impacts on the 
response(s) of the immune system are contextualized. Two reports 
discuss stimulating the immune system to either fight disease or protect 
the host against the effects of disease treatment. Specifically, Nicolete 
and Nicolete [3] report new technology employing a biodegradable 
micro particulate system stimulating the release of leukotriene LTB4 
to the lungs, thus enhancing a strategy to boost host defense against 
specific airway infection from fungal histoplasmosis. Logani et al. [4] 
review the effects of millimeter wave therapy (MMWT) utilized in 
Russia and Eastern Europe as treatment of disease, and propose its use 
as a complementary therapeutic modality to boost the immune system 
when chemotherapy and/or radiotherapy is used to treat cancer. Based 
on experimental studies where MMWT has been shown to reduce the 
spread of melanoma [5]; the authors discuss their findings that MMWT 
can enhance T-cell mediated immunity, and accelerate recovery of 
NK cell activity in mice treated with chemotherapy, as associated 
with the restoration of spontaneous release of TNF-α by peritoneal 
macrophages. 

Two other reports discuss the impact of cytokines on disease-specific 
inflammation. Scholten et al. [6] show that acute liver injury is combated 
by the recruitment of immune cells and neutrophils by the induction of 
chemokines in the leukocyte chemoattractant receptor network (CXC 
family) and ligands such as CXCL9 and CXCL1; their infiltration into 
liver tissue is associated with the fibrosis seen pathologically in many 
chronic liver diseases including viral hepatidites, steatohepatidites, 
or autoimmune disorders. In their study, mice treated with rCXCL9 
had increased CXCL1 concentration in hepatic cells, and increased 
infiltration of neutrophils. Conversely, Aoyagi and Matsui [7] highlight 
cytokine signaling as a key event in the inflammatory response after 
cardiac injury: the interaction between leukocytes, cardiac fibroblasts, 
and cardiomyocytes may instead be detrimental and lead to further 
heart failure. They also note that activation of mammalian target of 
rapamycin (mTOR) in cardiomyocytes suppresses inflammatory 
reaction in pathologic cardiac hypertrophy, with an associated decrease 
in IL-6 and IL-1β production and less accumulation or recruitment of 
macrophages, thus better preserving cardiac function by preventing 
damage during remodeling.

Can these above studies be distilled to hypothesize the benefit of 
harnessing cytokines in host defense and even offense as in clinical 
therapeutics? Can these cytokine pathways be specifically targeted 
to enhance treatment, harnessed as adjuncts to cancer therapy, and 
even a graft-versus-host response against tumor? Are they able to 
be specifically targeted to inhibit cancer cell metastases and vascular 

permeability? As cytokines can be exploited to evoke an immune 
response, is there a therapeutic index or threshold at which this may be 
more harmful than beneficial (i.e., in cardiac injury, as seen by Aoyagi 
and Matsui’s paper [7])? Regarding our current multidimensional 
“war on cancer”, there are thus many aspects as to how cytokines 
may be viewed in fighting this particular disease entity, but it can be 
additionally hypothesized that harnessing these may produce response 
but must be pursued with caution as their overstimulation can also 
cause symptoms and additional morbidity. 

To put these reports into context of cancer therapy, it is important 
to consider how cytokines are involved in specific malignancies. First, 
in breast cancer, CXCL13 chemokine ligand expressed by stromal 
cells in B-cell follicles has been postulated to play a role in disease 
progression [8]. In the leukocyte chemoattractant receptor (CXC-
motif) network, high expression of CXCL13-CXCR5 chemokine axis 
found at the mRNA level has been shown to be significantly associated 
with shortened disease-free survival (DFS) in ER-positive breast 
cancer (especially those with high nuclear grade), but associated with 
a more prolonged DFS in HER-2-positive breast cancer [9]. Bonecchi 
et al. [10] showed that CCL2 chemokines polarize tumor-associated 
macrophages (TAMs) and promote tumor cell proliferation and 
survival, guiding them to secondary metastatic sites. In breast cancer, 
a cytokine axis involving intracellular adhesion molecule-1 (ICAM-1), 
which regulates vascular permeability, is linked to expression of tumor 
suppressor genes [11]. Particularly, the families of suppressors of 
cytokine signaling (SOCS) are cytokine-inducible inhibitors of signal 
transduction which act via inhibition of the JAK-STAT pathway as a 
classical negative feedback loop, of which caveolin-1 is a significant 
family member [12]. Jasmin et al.[12] have shown that increased 
expression of caveolin-1 conversely correlates to metastasis formation. 
A secreted form of caveolin-1 is suggested to function as an autocrine/
paracrine growth factor, along with members of the JAK-STAT family 
as well as specific cytokine receptors being enriched in caveolar domains 
in their structure and co-precipitate with caveolin-1 [12]. Therefore the 
tumor microenvironment once again becomes a focus in this disease 
process in identifying targetable mechanisms for inhibition of tumor 
growth. Martinez-Outschoorn et al. [13] have shown that in vitro, co-
culture of fibroblasts with breast cancer cells increases their own TGF-β 
signaling, as well as that of numerous other cytokines including IL-
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6, IL-8, IL-10, MIP1α, IFNγ, RANTES, GMCSF, PAI-1. This in turn 
causes autophagy in adjacent associated fibroblasts, promoting breast 
tumor progression and metastases, with loss of Cav-1; in vivo, this is 
associated with early tumor recurrence and LN metastases [13]. Low 
caveolin-1 expression is even associated with interstitial lung disease as 
a possible pathogenic mechanism in scleroderma [14], where CXCR4 
and its ligand CXCL12 (stromal cell-derived factor-1) are upregulated 
in the lung tissue. Expressions of CXCR7 and chemokine ligands 
are also detected in anaplastic astrocytomas and in glioblastoma 
multiforme, on both glioma cells and the vasculature [15]. Here, 
dampening of these cytokine network(s) may thus have downstream 
impact in controlling tumor growth. 

A classic malignancy for which cytokine overexpression and 
interaction with the bone marrow microenvironment leading to 
malignant clonal expansion is multiple myeloma. Expressed by all 
myeloma cells but not by normal plasma cells, IL-1β is a major cytokine 
responsible for the paracrine production of IL-6 by marrow stromal 
cells [16]. Mesenchymal bone marrow stromal cells from MM patients 
also differ from healthy donors by increased production of IL-6, IL-10, 
TNF-α, OPN, HGF, BAFF in response to co-culture with RPMI 8226 
cells; these in turn enhance the production of sIL-6R by RPMI 8226 [16]. 
Lust and Donovan [17] recently showed that IL-1 antagonists inhibit 
paracrine IL-6 production in patients with smoldering (asymptomatic) 
myeloma, that this intervention can delay progression of disease to full-
blown symptomatic myeloma, and therefore anti-cytokine therapies 
that neutralize IL-1 (i.e., IL-1Rα and low-dose dexamethasone) show 
promise in controlling proliferation. Furthermore, the combination 
of an Antibody against cell surface protein CS1 (elotuzumab) plus 
lenalinomide was shown to increase natural killer (NK) cells and 
thus increase myeloma cell kill by an associated increased IFNγ, IL-
2, ICAM-1, and CD25 expression [18]. However, levels of cytokines 
can also rise as indicator of treatment effect as well. A current study at 
the MD Anderson Cancer Center is measuring inflammatory cytokines 
by buccal swab to correlate with neurocognitive and neurosensory 
symptoms in multiple myeloma, and has preliminarily shown that 
several inflammatory markers are associated with severity of symptoms 
during induction therapy [19,20]. For example, sIL-R1 expression was 
shown to be associated with distress and sadness; sIL-6R associated 
with disturbed sleep, poor appetite, sore mouth; and IL-6 associated 
with pain, fatigue, nausea, sore mouth [20]. Whether direct cytokine 
intervention is a clear target or cytokine release is a result of cell death 
is not clear in causality. Much of the latest research in myeloma clinical 
therapeutic trials involves not only immunomodulatory (IMiD) 
therapy with drugs such as thalidomide and its derivatives -- which 
not only case growth arrest and/or apoptosis of multiple myeloma 
cells, but depressed expression of cytokines from adjacent stromal cells 
[21] – but also targeting of intracellular mechanisms such as inhibition 
of the proteosome, the use of histone deacetylase inhibitors, as well 
as antibodies against cell surface molecules [22,23]. Current studies 
evaluating their response in both first-line as well as refractory and 
relapsed settings are underway (http://www.cancer.gov). 

In malignant melanoma, a highly immunogenic tumor, those 
tumors showing a brisk lymphocyte infiltrate exhibit a better overall 
prognosis and even the propensity for histologic regression [24]. Steele 
et al. [25] have shown that prokines stimulate the micro-environment 
and prime the immune system for fighting against tumor, with 
increased expression of CXCR3/CCR5 ligand chemokines (which 
recruit tumor-infiltrating lymphocytes (TILs)) ex vivo being associated 
with increased responsiveness to treatment in patients on several 

adoptive therapy clinical trials [26]. As a classic chemokine, IL-2 has 
been reviewed by the Cytokine Working Group as a tool harnessed to 
induce remission of multiple myeloma [27,28], with the injection of 
peptide vaccine improving overall response rate [29]. Similar to the 
concept we see with the cardiac injury paper by Aoyagi and Matsui 
[7], however, significant toxicity has been reported with IL-2 treatment 
and others. In recent landmark practice-changing trials, HLA-A*0201-
positive patients with progressive advanced melanoma gained an 
improved overall survival when treated with a peptide vaccine plus 
ipilimumab, a human monoclonal antibody specific for the cytotoxic 
T-lymphocyte antigen-4 (CTLA-4) [27,30]. Ipilimumab mimics T-cell 
surface molecule CD28 and blocks interaction with antigen-presenting 
cell (APC) surface markers CD80 and 86, otherwise needed for blunting 
of T-cell activation, and subsequently augmenting T-cell proliferation 
[31]. However, patients with autoimmune diseases are at greater risk 
for adverse effects due to this same mechanism [27]. Furthermore, a 
dose-response relationship with ipilimumab can be seen in causing 
toxicity [32], even in treatment-naive patients receiving a higher 
confirmed dose [33]. Several chemokine-receptor axis antagonists are 
now being tested in the clinic in various tumors [34], but challenges lie 
in unpredictable therapeutics in animal models, and target redundance, 
as is thus discussed by Horuk [34]. 

While the immune environment and chemoattractant cytokines 
are one possible pathway for therapeutic intervention in disease 
proliferation and ultimately for malignant progression of cancer cells, 
myriad therapeutic target categories have also recently been reviewed 
to include apoptotic pathway(s), genomic mutation, angiogenesis, 
mechanisms of invasion and metastases [35]. Additional toxicity of 
chemokine-directed therapies is limiting in clinical trials and adds 
further challenge for therapeutic benefit. However, further research is 
needed to intricately and specifically identify these targets in order to 
develop therapeutic intervention tolerable for the host while attacking 
virulent and neoplastic disease. 
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