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Introduction 
Cells communicate with one another through extracellular 

signalling proteins know as cytokines. Each cytokine is produced 
immediately in response to many different stressors and binds to 
the extracelular domain of either one or two matching membrane-
bound receptors denoted as α-, β- or γ-chain [1]. Due this matching 
specificity, cytokines enables the rapid propagation of immune 
signaling and have long been regarded as the regulators of host 

responses to infection, immune responses, inflammation, and 
trauma [2]. Nevertheless, the immune system’s primary task telling 
friend from foe is not one that can be easily solved solely through the 
indiscriminate production of cytokines to pass on instructions to cells. 
Faced with a serious threat such as infection, wound or tumors, the 
system needs to mount a defense response immediately. However, it 
also needs to know when not to interfere with innocuous visitors. To 
deal with dangerous outsiders, vertebrates have developed two lines 
of defense. These are termed learned immunity, which is acquired 
by exposure to a pathogen, either from the environment or through 
a vaccine, and innate immunity, which is the immediate hard-wired 
reaction to outside invaders [3]. A wide set of immune competent 
cells actively interact between the two arms of the immune system to 
mount an effective inflammatory defense against a particular threat. 
However, inflammatory processes intend to mediate against invaders, 
if not properly controlled, could irreversibly damage host tissues [4]. 
At cellular level, the key ingredients in linking the innate and adaptive 
responses are the innate-like cells. The best example of this particular 
cell type is the natural killer (NK) cell, a subset of lymphocytes involved 
in early defenses triggered through receptors that respond to infected, 
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Abstract
The natural killer group 2 members D (NKG2D) is an activating receptor which plays a major role in immune 

surveillance, and the detection and elimination of malignant tumors and infected cells. NKG2D acts over both arms 
of the vertebrate immune response, and is expressed in some human and mouse myelopoietic, γδ T, NKT and CD4+ 
cells, but is present in all NK and CD8+ T cells in humans and activated mouse CD8+ T cells. In humans, eight ligands 
which selectively bind to the NKG2D receptor have been identified. These ligands are not systemically expressed, 
but are triggered in response to stress and expressed only under specific pathological states. Several research 
results point to the importance of cytokines for increasing expression of NKG2D to restore the functionality of NK 
cells as well as their ligands in the target cells. However, the NKG2D system itself in an activated state, also release 
pro and anti-inflammatory cytokine transcripts to establish communication with other cells or for self-regulation. 
Additionally, type I antiviral interferon is largely produced. Such cytokine interactions could be regarded as a double 
edged sword. This behavior is emphasized by a discrepancy regarding the functionality of cytokines which interact 
with, or on the NKG2D system. Indeed, they seem to protect the host and rather can induce ligand expression, 
cell proliferation or dissemination of malignant tumors, generating complicated cytokine-mediated messenger loops 
which are far from being fully understood. Whatever the case, cytokines related to the NKG2D system could be an 
attractive and useful target for immunotherapeutic approaches. Thus, here we briefly review recent findings on the 
main aspects involved in the regulation of this system and, particularly, attempt to clarify the role played by cytokines 
in the activating or inhibitory function they exert over the NKG2D system in different contexts.
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transformed and/or stresed cells [5,6]. Among the different receptors 
expressed by NK cells, the most studied is the NKG2D, which, upon 
stimulation, binds to any of the eight different ligands (MICA, MICB 
and ULBP 1 to 6) of the NKG2D system [7]. Upon detection of some 
pathological alterations in autologous cells, stimulation of the receptor 
can lead to the enhancement of innate immune functions, mediated 
by NK cells and myeloid cells, and the enhancement of adaptive 
immunity mediated by CD8+ and γδ T cells [8]. In human NK cells, 
at least, crosslinking with multivalent soluble ligands of NKG2D 
stimulates the production of several cytokines, including interferon 
gamma (IFN-γ), tumor-necrosis-factor alpha (TNF-α), lymphotoxin 
and the colony stimulating factor 2 (granulocyte-macrophage) (CSF2), 
as well as chemokines such as CCL4 and CCL1 [9-11]. However, the 
cytokines produced by NKG2D positive cells seldom play a single role. 
This notion is supported by several recent investigations which have 
established that, upon activation [12,13] or inhibition [14,15] of the 
NKG2D system, the same set of cytokines might be acting in both 
responses. Several research groups have reported functional aspects of 
cytokines in which IL-2 [16,17], IL-15 [18,19] or the combination of IL-

15 and TNF-α [20], have participated as key molecules, and observed a 
marked increased expression of the NKG2D receptor. In other studies, 
the dual functional role of cytokines has been demonstrated using IL-4 
[21] or IL-21[22], two well known inducers of NK cell maturation 
[23]. This last study suggested that both cytokines, the IL-4 and the 
IL-21, act as negative regulators of the NKG2D system in both NK 
and CD8+ T cells. Additionally, the modulation of NKG2D ligands 
has also been observed by IFN-γ, which downregulates the expression 
of MICA and ULBP2 [24,25], and IFN-α that upregulates the same 
[26,27]. Nevertheless, in a regular setting, the activation of the NKG2D 
system by any of its ligands, triggers cytokine production to activate 
innate or adaptive immune responses following a canonical pathway. 
Therefore, to define the exact role that a certain cytokine may play in 
the NKG2D system is far from straightforward since, as mentioned 
above, evidence suggests their involvement in both directions depends 
on the context of the study (Table 1). In this brief review, we intend to 
summarize and discuss recent advances made in our understanding of 
the double edged nature of cytokines in the regulation of the NKG2D 

Name Cytokine Producer cell Cell target Organ target Condition Organism Main function Ref
Interleukin 1, alpha Il1a

Macrophages Tumor cell Skin Merkel Cell 
Carcinoma M

Down-regulation of RAE-1, tumor-cell 
resistance to NK-mediated control of virus-

induced tumors
[86]

Interleukin 1, beta Il1b

Interleukin 2 IL2 T cells NK - Viral infection /
tumor H Up-regulation of NKG2D-DAP10 surface 

expression
[69], 
[68]

Interleukin 4 Il4 Th cells CD8+ T cells - Th2 pathology M
Down-regulation of NKG2D and increasing 

of the activation threshold of memory 
CD8+ T cells

[21]

Interleukin 6 IL6 dNK dFibroblast Placenta HCMV infection H Control and spreading suppression of 
HCMV infection by NKG2D of dNKs [72]

Interleukin 7 IL7 - NK - Viral infection /
tumor H Up-regulation of NKG2D-DAP10 surface 

expression [69]

Interleukin 8 IL8 Myoblasts NK Muscle Inflammatory 
myopathies H Up-regulation of NKG2D and NK cell-

mediated lysis of muscle cells [123]

Interleukin 9 IL9 CD8+ T cells in vitro - Viral infection /
tumor H Decreased expression of antiinflammatory 

cytokines through NKG2D expression [89]

Interleukin 10 IL10 DCs DCs - HIV infection H Immune dysfunction due to NK cell-
mediated elimimatiom of DCs [124]

Interleukin 12 IL12
PBMNc NK - HCMV infection H

Down-regulation of NKG2D to control 
NK cell reactivity against normal cells 

expressing NKG2D ligands
[125]

NK - - Infection/tumor H Up-regulate the expression of NKG2D in 
NK cells [9]

Interleukin 13 IL13 CD8+ T cells - - Viral infection /
tumor H Decreased expression of antiinflammatory 

cytokines through NKG2D expression [89]

Interleukin 15 IL15
in vitro

NK - H Up-regulation of NKG2D-DAP10 surface 
expression [69]

IELs Intestine Celiac disease H Induction of MICA surface expression [128], 
[66]

DCs NK - Hepatitis C H Up-regulation of MICA/B in DCs and 
activation of NK cells [25]

Interleukin 17 IL17 CD4+ T cells IELs Intestine Crohn's Disease H Th17 immune response [126]

Interleukin 18 IL18

Macrophages, 
DCs, 

Keratinocytes

Leukemia 
cells - Leukemia H Up-regulation of ULBP2 [85]

in vitro NK - Tumor H Down-modulation avoidance of NKG2D by 
TGF- β1 (together with IL-2) [68]

Interleukin 21 IL21

Ovaric cancer 
cell line NK Ovary Ovarian cancer H Up-regulation of NKG2D-MICA expression 

and the  cytokines IFN-γ and TNF-α [70]

Th cells NK/CD8+ T 
cells - Autoimmunity H Down-regulation of NKG2D/DAP10 in 

autoimmune diseases (immunotherapy) [22]

Interleukin 22 IL22 CD4+ T cells IELs Intestine Crohn's Disease H Potentiate Th17 immune response [126]



Citation: Montalban-Arques A, Gorkiewicz G, Mulero V, Galindo-Villegas J (2014) Cytokine Intervention: A Double Edged Sword in the Nkg2d System 
Regulation. Immunome Res S2: 002. doi: 10.4172/1745-7580.S2.002

Page 3 of 11

ISSN: 1745-7580 IMR, an open access journalImmunome Res Cytokine Biology

system, highlighting the importance of the full co-operation between 
both components to achieve a succesful immune response.

Natural Killer (NK) Cells: the Link between Innate and 
Adaptive Immunity 

Herberman [28] and Kiessling [29] described NK cells for the first 
time in 1975, but not until the last decade a true and unique identity 
of this cellular group were firmly established. NK cells are a subset of 
lymphocytes that lack antigen-specific cell surface receptors [30] which 
provide innate effector mechanisms against viruses and tumor cells 
through direct cytotoxic effects and the release of cytokines [5]. NK 
cells detect microbial insults by means of innate receptors like the Toll-
like receptors, or in response to pro-inflammatory cytokines produced 
by dendritic cells (DCs) [31-33] macrophages and neutrophils 
[34]. To achieve their basic effector functions, fulfil their intrinsic 
development, and to survive or proliferate, all NK cells are dependent 
on cytokines of the common gamma chain (γc) family (IL-2, IL-7, IL-
15, and IL-21) [35-37]. Of particular interest is interleukin-2, a key 
cytokine which enhances NK cell proliferation both in vitro and in 
vivo [38] potentiates and mediates NK-cell functions, orchestrates the 
interaction with T-lymphocytes and DCs [39], while contributing to 
achieve the homeostasis of mature NK cells [36]. In a different setting, 

during a viral infection, type I interferons (IFN-I), especially IFN-α, 
and type II IFN-γ are potent cytokines that trigger NK cell activation, 
turning them into surveillance entities that limit viral replication by 
binding to and sequestering specific virus-encoded proteins [40,41]. 
This viral dampening is a notable feature of NK cells, although recent 
studies have demonstrated that, in certain conditions, activated NK 
cells also have the ability to produce immunosuppressive cytokines 
such as TGF-β1 and IL-10, which may induce tolerance in local NK 
cells [42,43] and contribute to virus-mediated T-cell exhaustion 
[44,45]. Thus, this behavior suggests that, in addition to their positive 
role in combating viral treats when activated by IFNs, NK cells also 
have a negative regulatory role, releasing anti-inflammatory cytokines 
during acute and a chronic virus infection [41]. In addition, a different 
NK feature promotes their rapid extravasation from blood vessels or 
specific tissue to enhance the recruitment of immune cells at infection 
sites or tumor foci. These is achieved through the secretion of a wide 
set of chemokines, which include CCL2 (MCP-1), CCL3 (MIP1-a), 
CCL4 (MIP1-b), CCL5 (RANTES), XCL1 (lymphotactin) and CXCL8 
(IL-8) [31]. This secretion of chemokines by NKs is an additional key 
feature that promotes their co-localization with other hematopoietic 
cells in areas where inflammatory processes are taking place or in 
tumor immunosurveillance sites [46]. But, despite this ability of NK 
cells to mediate the transcription of cytokines, they need to be primed 

Interleukin 33 Il33
Macrophages Tumor cell Skin Merkel Cell 

Carcinoma M
Down-regulation of RAE-1 for tumor-cell 

resistance to NK-mediated control of virus-
induced tumors

[86]

Tumor necrosis factor Tnf/TNF
in vitro ECs Endothelium Activated 

endothelium H Inhibition of NK cytotoxic activity by 
soluble MICA [90]

Interferon alpha 1 IFNA1
DCs NK - Hepatitis C H Up-regulation of MICA/B in DCs and 

activation of NK cells [25]

in vitro Tumor cell - Infection/tumor H Promotion of MICA expression in tumor 
cells, enhancing their sensitivity to NK lysis [26]

Interferon beta 1 IFNB1 PBMNc NK - HCMV infection H
Down-regulation of NKG2D to control 
NK cell reactivity against normal cells 

expressing NKG2D ligands
[125]

Interferon gamma ifng/IFNG

CD4+ T cells IELs Intestine Crohn's Disease H Up-regulation of MICA in IELs during 
Crohn's disease [127]

chNKG2D T 
cells Tumor cells - Lymphoma/ Murin 

ovarian cancer M Stimulation of DCs, NK and T cells with 
the subsequent antitumor effect

[89], 
[88]

in vitro ECs Endothelium Activated 
endothelium H Inhibition of NK cytotoxic activity by 

soluble MICA [90]

Colony stimulating 
factor 2(granulocyte-

macrophage)
Csf2/CSF2

Ovaric cancer 
cell line NK Ovary Ovarian cancer M Up-regulation of NKG2D-MICA expression 

and the cytokines IFN-γ and TNF-α [70]

chNKG2D T 
cells Tumor cells Lymph node/ 

Ovary
Lymphoma/ Murin 

ovarian cancer M Stimulation of DCs, NK and T cells with 
the subsequent antitumor effect

[89], 
[88]

NK in vitro - Infection/tumor H
ULBPs induce NK cells to produce this 

chemokine to recruit and activate NK and 
other immune cells

[9]

Transforming growth 
factor beta 1 TGFB1 in vitro NK - Viral infection /

tumor H Supression of NKG2D-DAP10 surface 
expression and MICA

[87], 
[67], 
[69]

Chemokine (C-C 
motif) ligand 4 CCL4

NK in vitro - Infection/tumor
H ULBPs induce NK cells to produce these 

chemokines to recruit and activate NK and 
other immune cells

[9]
Chemokine (C-C 

motif) ligand 1 CCL1 H

Chemokine (C-C 
motif) ligand 2 Ccl2/CCL2

Tumor cells NK Liver Carcinoma M
Elimination of senescent tumors by NK 

cells due to p53 and NKG2D ligand 
expression in tumor cells

[71]

dNK dFibroblast Placenta HCMV infection
H

Crucial role of NKG2D in dNK cells in 
controlling HCMV infection and spreading [72]Chemokine (C-X-C 

motif) ligand 1 CXCL1 H

Table 1: Major cytokines and chemokines related to the NKG2D system Abreviations: CCL:    Chemokine c-c motif Ligand; CXCL: Chemokine c-x-c motif Ligand; chNKG2D:  
chimeric NKG2D; DCs: Dendritic Cells; dFibroblast: Decidual Fibroblast; dNK:  Decidual Natural killer; ECs:  Epithelial Cells; H: Human; HCMV: Human Citomegalovirus; 
HIV:  Human Immunodeficiency Virus; IELs: Intestinal Epithelial Cells; IFN: Interferon; IL: Interleukin;  M: mouse; NK: Natural Killer; PBMCs: Peripheral Blood Mononuclear 
Cells; TGF: Transforming  Growth Factor; Th: T helper; TNF: Tumor Necrosis Factor; (-) not specified. 
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in advance by exogenous cytokines such as IL-15 [47,48], IL-12 [49] or 
IL-18 [50] to complete their full effector potential. 

Hallmarks of NK Cells Receptors
NK cells possess a particular set of receptors that can sense 

microbial and non-microbial signals emitted by target cells through 
a variety of lectin-type receptor families. Of particular interest are 
the type II transmembrane proteins, which include the natural 
killer receptor (NKR) family such as FcgRIIIA activator [51], or the 
mammalian inhibitory CD94/NKG2 receptors [6]. CD94 forms 
heterodimers with various NKG2 receptors but not with NKG2D, 
which is a homodimer. In addition to CD94/NKG2 receptors, in some 
rodent species the inhibitory Ly49 family of lectin-type NKRs is also 
present. Additionally, cytokine receptors coupled to the common (γc) 
IL-15R, IL-2R and IL-21R are also involved in NK cell development 
and their effector functions. Among these receptors, IL-15R is essential 
for the maturation and survival of all NK cells, while IL-1R in humans 
[52] and IL-18R in mice [50], which are linked to the adapter protein 
MyD88, have a particular role in the NK cell maturation process. 
Thus, based on the above evidence, it can be concluded that, despite 
the considerable intra-and interspecific variation in gene numbers and 
complexity among mammalian Ig-type and lectin-type NKRs, they are 
expressed on NK cells, bind to MHC I or proteins that share structural 
similarities with MHC I, and can inhibit or activate target cell killing 
and/or cytokine release through competing signaling pathways [6]. 

Cytokine Induced Killer Cells (CIK): Antitumor 
Inducers

Cytokine-induced killer cells (CIK) cells are a heterogeneous subset 
of ex-vivo expanded T lymphocytes with a mixed T-NK phenotype 
[53]. Among the several advantages of conducting research with CIKs, 
the most interesting are their rapid proliferation in vitro, the strong 
antitumor activity and the broader target tumor spectrum they possess, 
compared with other antitumor effector cells, have been investigated so 
far [54]. Additionally, CIK cells have the capacity to provide a non-cross-
resistant mechanism of antitumor activity that can be incorporated in 
surgery, radiation or chemotherapy treatments [55]. Thus, in the last 
years application of CIK cells in combination with chemotherapy has 
raised a powerful tool to treat cancer patients. In a classical approach, 
these cells are derived from peripheral blood mononuclear cells 
(PBMCs), but can also be generated from bone marrow or umbilical 
cord precursors [56]. The ex vivo expansion of CIK cells takes 3-4 weeks 
and is driven by the addition of IFN-γ, Ab-anti CD3 and IL-2 [57] to 
the cell culture. When the expansion is finished, the predominant 
subsets of CD3+ T lymphocytes are: CD3+CD56- and CD3+CD56+, 
formerly known as cytotoxic NK-like T cells. The antitumor activity 
of CIK cells relies solely on cell–cell contact [17]. Briefly, following an 
elegant research approach using antibodies against CD54, CD11c and 
NKG2D, Verneris and colleagues succeeded to attenuate the cytotoxic 
effect by blocking the cell-cell interaction, thus demonstrating that 
such effect is based on MHC-unrestricted mechanisms which rely on 
the interaction of the NKG2D receptor present in CIK cells and the 
ligands expressed in tumor cells. Therefore NKG2D-ligand interaction 
triggers the last step of tumor-killing, which is mediated by perforin 
and granzyme. These enzymes play a fundamental role in generating a 
pore in the cell membrane, which finally causes apoptosis of the target 
cell. Thus, capacity of CIKs as effector cells has been observed to be 
active in solid and hematological malignancies, which has been tested 
in vitro and confirmed in vivo with murine models of human tumor 
xenograft transplants. In a study of the cellular capacity of IL-2 primed 

CIK cells, resulted in the downregulation of the IL-18 levels which 
were mediated by IFN-γ [58,59]. Liu and colleagues, used oxaliplatin-
folinic acid-fluorouracil (FOLFOX4) in combination with CIK cells as 
adjuvant to treat patients with gastric cancer [60]. The process described 
in their study identified the need for exogenous cytokines to prime 
CIKs. Briefly, the CIKs obtained from PBMCs and stimulated with 
INF-γ, IL-1α, IL-2 and anti-CD3 MAb for use as adjuvants resulted 
in increased NK cells activity and higher CD3+ and CD4+ T total cell 
counts, whereas CD8+ T cells decreased in number. In a parallel study, 
Shi and colleagues used fluorouracil (5-FU) with CIKs as adjuvant 
to successfully treat advanced gastric cancer [54]. The CIK cells used 
were activated by IFN-γ and IL-2 from the patients’ PBMCs. The mix 
of 5-FU and activated CIK cells prolonged the disease-free state and 
significantly improved overall survival in patients with intestinal-type 
tumors. Thus, these studies conducted by different groups demonstrate 
that CIK cell priming by cytokines is essential for their activation and 
positive activity over malignant tumors. Interestingly, to determine 
the clinical value of autologous immunocyte therapy as a standard 
treatment against cancer, patients with colorectum, lung, breast, 
kidney, or stomach cancer received the DC vaccination once a week for 
six weeks and a CIK cell injection six times within four days. A positive 
cell-mediated cytotoxicity response was recorded, and improvements 
in physical strength, appetite and sleeping status were observed. Thus, 
they concluded that the therapy was safe since no serious adverse side-
effects similar to those caused by chemotherapy and radiotherapy were 
observed [61]. Additionally, in recent publications it was suggested 
that CIK cells treated with IL-15 [62], or in combination with IL-2 
[63] improve their cytotoxicity against leukemic cells or lung cancer 
cells, respectively. In both cases, the percentage of CD3+CD56+ cells 
was significantly increased in IL-15 stimulated CIK cells and their 
proliferative rate was higher. Taken together, these results realize that 
cytokine-activated cells may have a beneficial effect in the near future 
on the treatment of patients with cancer [61]. 

Cells Respond to Stress in Different Ways
Broadly defined, stress is the state in which cells deviate from the 

status quo in response to sudden environmental changes or frequent 
fluctuations in environmental factors [64]. Such changes can damage 
existing molecules, including proteins, mRNAs, DNA and lipids, and, 
if the damage is not dealt with, a metabolic imbalance may result in a 
redox alteration [65]. Several mechanisms are immediately triggered to 
overcome the stress responses; for example, damaged macromolecules 
are promptly cleared [66], molecular chaperones are induced [67,68] 
or growth arrest and “emergency” gene transcription kicks in [69]. 
When cells can no longer cope with excessive damage, straightforward 
cell death may occur through necroptosis. In contrast, stressors like 
heat shock, oxidative stress, viral infection or DNA damage may 
induce the expression of particular extracellular ligands [70]. Tumor 
cells can be stressed by multiple intrinsic or extrinsic stimuli, both of 
which may promote membrane expression or the release of ‘eat-me‘, 
‘danger‘, or ‘killing signals’ that will facilitate immune recognition and 
the final eradication of stressed tumor cells [71]. Molecules from the 
MHC-I are ligands, which inhibit or activate receptors expressed on 
NK cells and T cells. The expression of MHC-I is frequently impaired 
in virus-infected or tumor cells, which results in lack of engagement 
on the inhibitory receptors and hence the activation of NKs. Hence, 
class I serves as a positive indicator for the integrity of cells, protecting 
against NK cell attack [72]. In contrast, NKG2D ligands, MICA/B and 
members of the ULBP/RAET1 may signal cellular distress and evoke 
immune responses. Although NK cells can eliminate tumor cells with 
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the loss or aberrant expression of class I, the interaction of MICA with 
NKG2D may promote antitumor responses in the presence of class I, 
depending on the balance of multiple inhibitory and activating signals, 
the relative amounts of receptors and their ligands, and the state of 
NK cell activation. However, this balance should be achieved through 
the differential expression of NKG2D-ligands, the modulation of the 
receptor and the cytotoxic activity of NKL cells after cell-cell contact 
with the tumor cells [73]. Thus, the interaction of NKG2D with 
MICA/B or ULBP/RAET1 may enhance diverse antitumor innate NK 
cell and antigen-specific T-cell responses. This recognition, in which 
self-encoded ligands are induced in stressed cells, is known as “induced 
self-recognition” [74].

The NKG2D System
Properties of the system in infection and tumor immunity

NKG2D is a cell-activating receptor that mediates non-MHC 
restricted and TCR-independent lysis. Cells expressing NKG2D 
are modulated by cytokines. Nevertheless, the NKG2D system has 
effector functions in which high levels of IFN-γ and TNF-α, among 
other cytokines with specific cytotoxic properties are produced 
[75]. Due this high plasticity, NKG2D is deeply involved in tumor 
immunosurveillance, which plays an important role in the cytotoxic 
activity of NK and CD8+ T cells. NKG2D is a C-type, lectin-like, 
type II transmembrane glycoprotein [76,77] which functions as an 
activating receptor through an interaction with the adaptor signalling 
molecules disulphide adaptor molecule (DAP)10 and/or (DAP)12 
[78,79]. When the receptor is ligated, DAP10 provides signals that 
recruit the p85 subunit of phosphatidylinositol 3-kinase (PI3K) 
and a complex of GRB2 and VAV1 to complete the activation [80], 
whereas DAP12 activates protein tyrosine kinase Syk and ZAP70 
[81], but this activation is not through the cytoplasmic signalling 
motif Tyrosine-Isoleucine-Asparagine-Methionine Motif (YINM) 
[82]. Therefore, the engagement of NKG2D with ligands in NK cells 
result in the induction of degranulation and cytokine production. The 
NKG2D receptor, is not only expressed by all NK cells [83] but also 
by NKT, subsets of γδ T cells [8], CD8+ T cells [71], activated mouse 
macrophages and a small subset of CD4+ T cells in humans. Thus, to 
trigger an effective immune response mediated by NK cells, the only 
prerequisite is engagement of the receptor with one of its ligands by 
means of a stimulus. However, in mouse T cells, co-stimulation by a 
subset of γδ T cells resident in the skin may be needed [84,85] . This 
co-stimulatory function is also present in αβ CD8+ T cells, but is much 
more noticeable when the cells lack CD28 marker expression, which 
is recognized as the normal co-stimulatory receptor for T cells [86]. 
Interestingly, the stimulation of CD8+ T cells with IL-15 together with 
CD3 generates a potent activation that leads to the engagement of the 
ligand with NKG2D. Such NKG2D priming driven by IL-15, triggers 
NK and T cell cytotoxicity, which is a key negative regulator in certain 
T cell–mediated pathologies such as in celiac disease [87]. Therefore, 
NKG2D is able to generate activating signals, which in some cases may 
co-activate cellular killing and produce undesired cytokines by NK 
cells and certain subsets of T cells. In the case of TGF-β1, it has been 
reported to decrease DAP10 levels and, as a consequence, NKG2D 
protein level [88]. Thus, to avoid the-induced NKG2D downregulation 
by TGF-β1 in NK cells, a previous activator engagement is required 
by the combination of IL-2/IL-18 with the receptor [89]. However, 
(γc) cytokines (IL-2, IL-7, IL-15) [89,90] and IL-18 [89] promote the 
induction of DAP10 and, consequently, the surface expression of the 
receptor. In ovarian cancer mice model, IL-21 has been also reported to 
play an activating role for the NKG2D expression [91] as well as innate 

tumor rejection activity, in tumors that can elicit an NKG2D-mediated 
immune response [92]. Therefore, two cytokines of the gamma-chain, 
the IL-7 and IL-15 seems to be key mediators in the upregulation of the 
NKG2D-DAP10 axis expression by NK cells. For instance, while IL-15 
plays a common signaling role, also primes and regulates the NKG2D 
expression through the phosphorylation and further upregulation of 
the adaptor molecule DAP10 [93]. 

The role of cytokines on the NKG2D system is double edged

Several examples may illustrate this cytokine double edged 
behaviour. In one case, the enhanced expression of IL-15 increases 
the impaired expression of the NKG2D ligand MICA in monocyte/
macrophages and induces the abnormal expansion of NKG2D+CD4+ T 
cells (NK cell-like CD4+ T cells) [75], like in a rare blood vessel disease, 
the granulomatosis with polyangiitis (Wegener’s) [94]. Interferons are 
rapidly induced when NKG2D is activated, particularly IFN-α may 
upregulate NKG2D expression but can also dampen the expression 
of inhibitory receptors like NKG2A or KIR2DL1. The IFN-γ, which 
plays an inhibitory role in the expression of NKG2D, promotes the 
expression of NKG2A [27].In the case of chemokines, CCL1, CCL2, 
CCL4 and CXCL1 are known for their capacity to recruit and activate 
NK cells to the target cells [9,95,96]. Taken together, these results point 
to the difficulties involved in in vivo prediction on how the NKG2D 
system might behave under different scenarios. Thus, from above 
description is clear that a selection of cytokines may be specifically 
required for activation or inhibition of the NKG2D receptor or their 
associated ligands. However, the ways in which these cytokines may 
behave do not always correlate with their primary associated functional 
role. Further studies are required to throw light on how these proteins 
are integrated in the signaling pathways of NK cell activation and how 
the engagement of different activating receptors controls their activity.

NKG2D Ligands Modulation by Cytokines
NKG2D has multiple ligands including MHC class I chain-related-A 

(MICA), -B (MICB), and several UL-16 binding proteins (ULBP), 
which are preferentially expressed after cellular stress, infection, or 
DNA damage [78,97]. In humans, the MICA, MICB and the ULBPs, 
also known as retinoic acid early transcript RAET1 proteins, have been 
seen to be upregulated in cancer and infected cells [8,78,81,98]. These 
ligands are recognized by the immune activating receptor NKG2D. 
Upon engagement, allows the recognition and further elimination of 
infected and malignant cells. In mice, there are no orthologs for the 
MICA and MICB genes, but a family of genes orthologous to the human 
ULBP/RAET1 family is present. These genes are highly polymorphic 
and encode proteins that fall into three subgroups of NKG2D ligands, 
including five different isoforms of retinoic acid early inducible-1 
(RAE-1) proteins (Rae-1α, Rae-1β, Rae-1γ, Rae-1δ and Rae-1ε), one 
murine UL16-binding protein-like transcript 1 (MULT1) protein, and 
three different isoforms of H60 proteins (H60a, H60b, H60c) [99]. In 
fact, to make the signalling pathways even more complex, there are 
over 60 MICA and 20 different MICB alleles. Human RAET1 genes 
are also polymorphic, as are Rae-1 and the histocompatibility antigen 
(H60) genes in mouse [100]. The effect of such polymorphism is that 
all the ligands engage with the NKG2D receptor with different degrees 
of affinity, which may affect the threshold of NK and T cell activation 
[7]. Moreover, some of the NKG2D ligands may be excreted to the 
extracellular environment, stay attached to the cell surface, remain at 
the transcription level biogenesis, be stabilized on the RNA or stabilized 
and cleaved from the cell membrane. Lastly, the effect of cytokines is 
no less confusing. As example, IL-18 increases the susceptibility of 
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target cells by inducing the surface expression of ULBP2 in leukemia 
cells [101]. However the pro-inflammatory cytokines IL-1α, IL-1β, 
IL-33, and TNF-α down regulate RAE-1 expression and susceptibility 
to NK cell-mediated cytotoxicity, leading to the avoidance of NK cell-
mediated control of virus-induced tumors in mice [102]. In a similar 
way, TGF- β1 inhibits the transcription of the ligand MICA in humans 
[103]. In turn, CSF2 upregulates NKG2D-MICA expression [91] and 
stimulates antigen-presenting cells (APC) to initiate an antitumor 
response [104,105]. This last effect is shared with IFN-γ. Furthermore, 
IFN-γ upregulates MICA in intestinal epithelial lymphocytes (IELs) in 
Crohn’s disease. However, it can also have a negative effect, leading to 
the inhibition of NK cytotoxicity by soluble MICA. This effect has been 
observed to be shared with TNF-α [106]. 

NKG2D Ligands Modulation by Alternative Players
Among the different cellular regulatory systems, it has recently 

been demonstrated that the translocation of mRNAs encoding the 
MICA/B in naive cells is inhibited by microRNAs (miRNA) [107]. 
However, upon stress, the transcription of MICA/B mRNAs is 
substantially upregulated and significant protein levels are detected. 
This observation suggests that the mRNA levels, when they exceed the 
amount of controlling cellular miRNAs, result in the overexpression 
of MICA/B proteins [70]. Until now, p53 has never been regarded as 
being essential for the expression of NKG2D ligands in cells suffering 
DNA damage. Nevertheless, co-operation between p53 induced-
tumor cell senescence and the innate immune system has recently 
been highlighted [108]. The restoration of p53 function in established 
carcinomas leads to tumor regression, but only in mice with an 
intact immune system. Also, the inflammatory cytokines IL-15 and 
CSF2, and the chemokines CCL2 and CXCL1 were upregulated in 
tumors following p53 reactivation, correlating with the recruitment of 
neutrophils, macrophages and NK cells into tumors, where they are 
responsible in tumor shrinkage [108]. Thus, it seems that input from 
p53 to the NKG2D system is crucial at some stages of the signaling 
cascade, directly modulating the transcription of cytokines by tumor 
cells. Other unexpected players are the epigenetic changes, manifested 
by inhibitors of histone deacetylase, which can also induce the surface 
expression of NKG2D ligands on tumor cells [109]. From an evolutive 
perspective, these ligands are fairly conserved among vertebrates, and 
thus are not exclusively expressed in human and mice, but they are 
widely distributed among mammals [110]. From the information 
presented above, it is clear that a large variety of NKG2D ligands exist. 
However, so far the explanation for this variability, and the intriguingly 
diversity in which they are regulated, remains a matter of speculation.

The Double Edged Activity Exerted by Cytokines on 
Cancer Cells 

During cell transformation and tumorigenesis numerous stress 
pathways are activated in affected cells [81]. During malignancies, 
NKG2D ligands are transcriptionaly induced and highly expressed on 
the surface of tumor cells. The ligands expressed depend on the type 
of cancer, which expresses MICA/B and at least one member of the 
ULBP family [111]. The receptor NKG2D participates in immune 
surveillance and has the capacity of eliminate NKG2D ligand-positive 
tumor cells in an early developmental stage [7]. A major feature of the 
antitumor response is mediated through type 1 cytokines, like TNF-α, 
or the IFN-γ. Indeed, increased amounts of IFN-γ and TNF-α were 
measured after treatment in the serum of patients [112]. Additionally, 
other cytokines, LTA, IL-13, IL-10 and CSF2, are produced upon 
contact with susceptible tumor target cells [113]. These cytokines 

can exert differential effects on the regulation of NKG2D ligands [7]. 
For example, melanoma cells exposed to IFN-γ downregulate MICA 
and ULBP2, and IFN-γ also reduces the expression of mouse H60 in 
sarcomas [24,114]. This reduced expression of NKG2D ligands has a 
negative effect, diminishing the susceptibility of tumors to NK cytolysis. 
In the supernatant of cultured HeLa and K562 cells, soluble MICA 
(sMICA) was observed to be upregulated by IFN-γ, demonstrating 
that IFN-γ modulates MICA expression not only at the transcriptional 
level, but also at the post-translational level by promoting proteolytic 
cleavage [27]. In contrast, IFN-α increases the expression of MICA 
in tumor cells and thereby enhances their sensitivity to NK lysis [27]. 
However, chronic exposure to tumor cells expressing NKG2D ligand 
alters NKG2D signalling and may facilitate the evasion of tumor cells 
from NK cell reactions [115]. One of the mechanisms that malignant 
cells are known to use for this purpose is the shedding of NKG2D 
ligands into the sera of cancer patients [116], where they weaken the 
immune response by downmodulating the receptor on effector cells 
and producing the consequent impaired immune response [114]. 
TGF-β1 has also been shown to decrease the transcription of MICA, 
ULBP2 and ULBP4 in human glioma [117], and downregulate NKG2D 
receptor expression on effector cells [118], while blocking TGF-β1 can 
lead to increased NKG2D expression [88,119,120]. This suggests that 
TGF-β1 secreted by tumors is a major mechanism that tumor cells 
employ to evade the NKG2D-DAP10-mediated cytotoxicity. Moreover, 
Clayton et al. [121] reported that tumor-derived exosomes also express 
NKG2D ligands and directly interact with NK and CD8+ cells. This 
response was demonstrated to be highly dependent on exosomal 
TGF-β1 and to induce the reduction in surface NKG2D expression. 
Using a mouse model, it was demonstrated that MICA did not mediate 
the downregulation of the receptor NKG2D [122]. The observed 
downregulation was explained through the sustained stimulation 
with tumor cell–bound ligand that disassociates the NKG2D receptor 
from the intracellular calcium mobilization and the exertion of NK 
cell–mediated cytolysis, while it induces the continuous production of 
IFN-γ. These functional changes are associated with a low abundance 
of the NKG2D signalling adaptors DAP-10 and DAP-12 [115]. So it 
was concluded that the low expression of MICA and MICB on resistant 
tumor cells may be another mechanism that allows tumor cells to 
escape from CIK cell-mediated cytolysis [17]. Although cytokine 
stimulation of cells may overcome receptor inhibition mediated by 
soluble ligands. To illustrate this mechanism, Song and colleagues [89] 
demonstrated that the combination of IL-2 with IL-18 can protect the 
TGF-β1-induced NKG2D down-modulation in NK cells via the JNK 
pathway. In addition, NKG2D contributes to the anti-tumor responses 
elicited by IL-2 and IL-12 cytokine therapy. As regarded the chemokine 
CCL2, it has been reported to be an active player in the elimination 
of tumor cells through the induction of NK cell recruitment into the 
tumor driven by p53 [95]. This mechanism has been demonstrated to 
be NKG2D-dependent and mediated by the recognition of ribonucleic 
acid export 1 (RAE-1) proteins in mice. Moreover, by pharmacological 
reactivation, p53 in specific cell lines has been reported to stimulate the 
expression of ULBP2 [123,124]. Perhaps, the use of ectopic NKG2D–
DAP10 expression triggers the tumor-promoting capacity through 
ligand-mediated NKG2D self-stimulation [125]. An overview of these 
regulation mechanisms is provided in Figure 1.

A Key Player in Immunotherapy: the Cytokines
Cytokines directly stimulate immune effector and stromal cells 

at the tumor site and enhance recognition by cytotoxic mediators. 
Numerous animal model studies have demonstrated that cytokines 
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have broad anti-tumor activity and this has been translated into a 
number of cytokine-based approaches for human therapy [126]. 
Additionally, the notable success of the targeted inhibition of several 
cytokines in patients with rheumatoid arthritis, psoriasis and many 
other diseases has fundamentally revised the treatment of inflammatory 
diseases. Together, these findings suggest that different conditions may 
share a common pathophysiology and may benefit from disruption of 
the cytokine network [127]. In cancer therapies, cytokines are critical 
for tumor immunosurveillance. Single-agent or the combination of 
cytokines with classical immune antibodies or TLR agonists resulted 
in potent CD8+ T cell-mediated antitumor effects [128,129]. The mix 
of CD40 antibody and IL-2 has been observed to have a synergistic 
antitumor effect [130,131], and a similar effect was observed when 
mice were treated with CpG motifs and IL-15 [129]. In both cases, 
the antitumor effects were dependent on the production of CD8+ T 
cells, IFN-γ, IL-12 and Fas ligand expression [129,130]. Additionally, 
it has been recognized that effector and memory CD8+ T cells express 
elevated levels of IL-12R and IL-18R, and secrete IFN-γ in response to 
stimulation with both cytokines [132]. In this setting, it is clear that the 
stimulation of CD8+ cells with cytokines results in antigen-nonspecific 
expansion, which is useful for immunotherapy in the treatment of 
advanced tumor models and represents a primary effector mechanism 
[131]. Interestingly, regulatory T (Treg) cells can inhibit NK cell cytolytic 
function and IFN-γ secretion, and have been shown to downregulate 
NKG2D in human and mouse NK cells through membrane-bound 

TGF-β1 [133]. However, not all the interactions between CD8+ cells 
and cytokines have been reproducible in NKG2D+CD4+ T cells. Even 
though , these cells proliferate and increase in number relative to other 
T cell populations, thereby causing imbalances in the lymphocyte pool 
and imposing an immunosuppressive cytokine milieu. In advanced 
cancer patients, however, cytokine mediated tumor expression and 
shedding, mainly of soluble MICA and B, can lead to a substantial 
proliferative expansions of the NKG2D+CD4+ T cells [125]. Thus, 
above presented evidences clearly point out that various clinical trials 
of immunotherapy for hematologic malignancies can induce regression 
to their pathophysiological state. 

Conclusions 
Based on the information reviewed above, it is clear that the 

cytokines involved on the regulation of the NKG2D system are an 
attractive target for therapy. However, many of the molecular processes 
associated in this system are not well understood and establishing their 
functional activity on particular scenarios remains a challenge. More 
knowledge is needed to understand the influences of these molecules 
on every single regulatory activity, ranging from target effector cells 
to the ligands they produce. A better molecular understanding on 
how cytokines regulate the effector response may provide important 
insights into the way in which the NKG2D system overcomes infection 
and combat tumors. We anticipate that answers to these questions 
will yield clinically useful information because the NKG2D system 
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Figure 1: Within the tumor microenvironment, cytokines play a significant role in the regulation of the cytotoxic and cytolytic activity against tumor cells. Antigen-
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cells, leading to tumor elimination or tumor-cell resistance, respectively. The different output effects depend on the developmental stage of the tumor. Cytokines 
produced by NKG2D+ cells modulate ligand expression on the target cell and stimulate APC to exert antitumor effects. Schreiner [132] alter [133] Muntasell [134] 
pariente [135] allez [72]hüe [136].



Citation: Montalban-Arques A, Gorkiewicz G, Mulero V, Galindo-Villegas J (2014) Cytokine Intervention: A Double Edged Sword in the Nkg2d System 
Regulation. Immunome Res S2: 002. doi: 10.4172/1745-7580.S2.002

Page 8 of 11

ISSN: 1745-7580 IMR, an open access journalImmunome Res Cytokine Biology

clearly has an essential role in removing harmful cellular components. 
Moreover, impairment or disabling of the system has been linked to 
many human pathologies including cancer, autoimmune responses like 
inflammatory bowel disease [134], Celiac disease [135] or several types 
of gastritis. With this in mind, this review will hopefully contribute 
to stimulate much interest into the search for new answers in this 
intriguing research field.
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