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Abstract

clinical considerations.

CYP2B6*6 genotyping appears to be a promising approach towards the prediction of efavirenz toxicity and risk of
developing resistant mutations to nevirapine. The use of cost-effective technologies to screen for the allele may
therefore become part of routine clinical practice, for which benefits in terms of cost reduction for governments and
patients are evident. However, pharmacogenomics has not yet lived up to its hype and benefits in both the
developed and developing worlds in particular sub-Saharan Africa where access to basic healthcare services is
limited. Although numerous reports have advocated for the implementation of CYP2B6*6-guided drug therapy in HIV
patients receiving efavirenz or nevirapine, this has not been effected yet. The reasons require both practical and
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Introduction

Potent highly active antiretroviral therapy (HAART) has now been
available to HIV-infected patients for over a decade, resulting in a
significant decline in disease-related morbidity and mortality [1].
However, a number of HIV-infected individuals fail to experience the
full benefit of their HAART, while others lack a robust virologic
response, and others experience drug related adverse reactions. A
number of factors may contribute to these variable drug responses
including virologic, immunologic, pharmacologic, pharmacokinetic
and pharmacogenetic differences [2]. Pharmacogenetic studies of
antiretroviral drug therapy have explored the influence of single
nucleotide polymorphisms in genes responsible for key proteins
involved in antiretroviral drug metabolism [3]. This has offered the
possibility of optimizing virologic response and minimizing drug
toxicity by individualizing anti-HIV pharmacotherapy [4]. CYP2B6 is
an important pharmacogene and a member of the cytochrome P450
family. It makes up approximately 2-10% of the total hepatic CYP
content [5], and is also expressed in the brain. CYP2B6 is responsible
for the metabolism of 4% of the top 200 drugs [6] and is highly
inducible by several drugs and other xenobiotics [7]. Among these
drugs are the non-nucleoside reverse transcriptase inhibitors
(NNRTIs); efavirenz and nevirapine. With the increasing use of
NNRTIs in African countries, due to high prevalence of HIV/AIDS, it
has become crucial to provide information on pharmacogenetic factors
influencing drug efficacy and safety [8]. The CYP2B6 gene exhibits
extensive polymorphism reflected currently by over 40 allelic variants
[9]. Of these, the most common allele, CYP2B6*6 which contains the
516G>T and 785A>G polymorphisms, is found at high frequencies in
all major ethnic groups ranging from 15% in Asians to almost 50% in
Blacks and African Americans [10-12].

The impact of genotype-guided efavirenz dosing has been a subject
of interest in many studies worldwide. Schackman et al. reported that

dosing of efavirenz in the treatment of HIV/AIDS, based on CYP2B6*6
genotyping is cost-effective compared with standard care in the USA.
In addition, there is decreased early treatment-limiting efavirenz
toxicity [13]. Although concerns have been raised regarding the
possibility of virologic failure with lower efavirenz doses, this would be
unlikely if medication adherence and drug monitoring of lower dose
regimens is mainted in the patients. A comprehensive genetic analysis
of CYP2B6 polymorphisms and their association with EFV
concentrations in the largest Chinese HIV-infected patient cohort
suggested that personalization of medical care may be feasible if these
genomic markers are validated and incorporated in EFV-containing
treatments [14].

Likewise, studies have also been done in African populations to
evaluate the clinical implications of the CYP2B676 allele in the use of
efavirenz [15-18], and nevirapine [19-21]. CYP2B6*6 has been
associated with higher efavirenz plasma concentrations due to lower
clearance rates, which may lead to CNS side effects [22,23]. These
correlations have led to recommendations to reduce the EFV dosage in
order to prevent occurrence of the adverse drug effects [18,24].
Individuals with the CYP2B6%6 allele have also been shown to have a
significant increase in nevirapine plasma concentrations, which has
been associated with immunologic response [19]. The use of single-
dose NVP to prevent perinatal vertical transmission has been reported
to have pro-longed exposures in women with the CYP2B6*6 allele,
which greatly increases the risk of developing resistance mutations to
NVP [25]. Given this background CYP2B6*6 may be the ideal genetic
marker for detecting predisposed patients to efavirenz induced side
effects and possible resistance to nevirapine. The economic and health
benefits to the patients are undeniable.

Notwithstanding the benefits of pharmacogenetic testing for
CYP2B6”6 in HIV therapy, several barriers impede its translation into
clinical practice. Despite several replication studies in African
populations that have confirmed the role of CYP2B6%6 in efavirenz
and nevirapine efficacy and safety, not much has been done to translate
this into routine clinical practice. One of the main challenges
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particularly in sub-Saharan Africa is the limited access to basic
healthcare services. As a result, implementation of pharmacogenomics
into routine clinical practice seems like a far off step. Most patients are
struggling to afford costs for basic tests and a genotype test would add
on to this burden. The availability of necessary facilities, infrastructure
and expertise poses another challenge. While some laboratories in sub-
Saharan Africa have adequate and high tech equipment required to
carry out the tests, availability for routine clinical use is impeded by
expensive running costs. Most of these technologies are finding more
use in research.

The current WHO HIV treatment guidelines (2016), recommend a
“treat-all” strategy which means that more people in Africa will start
ART earlier. This in turn means that there will be increased risk of
efavirenz-associated side effects due to high plasma concentrations as
well as nevirapine drug resistance due to prolonged high exposures.
The economic and health benefits associated with screening for
patients that are predisposed to these outcomes greatly outweigh the
challenges of the genotyping costs. The screening provides an
opportunity to improving the quality of life of those patients carrying
the allele either by switching them to alternative regimens or putting
them on reduced dosages. There is also a larger cost-effective impact by
decreasing the quantity of active pharmaceutical ingredients required
to cover the need of EFV containing ART regimens.

As the HIV epidemic continues to develop, countries in sub-
Saharan Africa continue to face the challenge of limited resources in
their health care systems. The emerging interests by developed
countries to conduct more clinical trials in the region may serve as an
opportunity to improve the current treatment strategies and slowly
start to implement pharmacogenomics in drug use. As governments in
the region continue to make improvements in treatment delivery, e.g
introducing access to routine viral load testing, serious considerations
should also be made towards implementation of pharmacogenetic
testing before therapy is initiated. In the long-term this will improve
treatment quality and individual health outcomes for people living
with HIV/AIDS in the region.
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