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Cryptococcosis is a systemic human and animal infection that has 
emerged as a life-threatening opportunistic mycoses since the advent 
of the acquired immune deficiency syndrome (AIDS), caused by the 
Cryptococcus neoformans/C. gattii species complex that comprises the 
pathogenic cluster, while other species of the yeast can sporadically 
be pathogenic to humans [1]. Moreover, biochemical differences 
subdivide C. neoformans into two varieties, C. neoformans var. grubii 
and C. neoformans var. neoformans, whereas differences in capsule 
polysacharides further subdivide the species into three serotypes, A, D 
and AD. Recently, a comprehensive molecular-based study proposed a 
rearrangement of the complex C. neoformans/C. gattii into seven species: 
C. neoformans (as var. grubii), C. deneoformans (as var. neoformans),
as well as C. gattii, C. bacillisporus, C. deuterogattii, C. tetragattii, C.
decagattii (as a subdivision of C. gattii) [2], still under evaluation by
the scientific community. The former variety, C. neoformans var. gattii,
is now recognized as a separate species, C. gattii, with serotypes B and
C [3-7], based mostly on molecular methods and on the absence of
genetic recombination between var. neoformans and var. gattii [2].

C. neoformans lives in the environment throughout the world, being 
associated to soil and avian excreta, especially pigeon droppings [8]. 
Additionally, C. gattii can be found on decaying wood and on multiple 
living tree species as an environmental habitat for the yeast [9,10], 
occurring mostly in immunocompetent individuals [11]. Both species 
infect primarily the alveolar space via inhalation of spores causing a 
pneumonia-like symptom that can spread to the brain and evolve to 
cryptococcal meningitis [4,7,12], whereas in immunocompetent hosts 
the lesions are focal, forming cryptococcomas, due to localized and 
effective host response to infection. The predilection for the central 
nervous system (CNS) could be determined by the production of laccase 
which catalyzes the formation of melanin in the fungal cell wall from 
catecholamine precursors [13]. In the specific case of C. neoformans, it 
can lead to a meningoencephalite, the most common presentation of 
fungal meningitis in individuals with AIDS, and can be fatal without 
treatment. There is an estimative of one million annual cases of 
cryptococcal meningitis caused by C. neoformans globally, mainly in 
immunosuppressed patients. Worldwide, the fungal disease contributes 
to nearly 630,000 deaths [14], the majority HIV-infected individuals 
in India, Africa, and Southeast Asia (one-third of all deaths in HIV/
AIDS patients). In Brazil, cryptococcosis by C. neoformans occurs in all 
regions, but C. gattii is the responsible for infections in young people 
and children in the Northern and Northeastern regions [15].

It is now well established that Cryptococcus is a model system 
for study and development of pathogenesis, diagnostic methods and 
therapeutics. The diversity at the genetic level (~100 genetic loci linked 
to its virulence composite) [1] allows for studies on virulence, genomics, 
transcriptomics and proteomics of this fungus.

Bases of identification of Cryptococcus neoformans/C. 
gattii species complex

C. neoformans and C. gattii can be traditionally identified by
phenotypic tests, as the production of a polysaccharide capsule, 

which is basically composed by glucuronoxylomannan (90%) and 
galactoxylomannan structures [15], being accepted as the major 
virulence factor and diagnostic proof for the confirmation of the 
disease, once it can be produced in vitro and in vivo, and detected after 
staining with India ink. Other tests focus on the melanine deposition 
on the cell wall (phenoloxidase test) and growth at 37°C. C. gattii can 
be differentiated by the ability to use glycine as carbone and nitrogen 
sources, and resisting growth inhibition by cycloheximide and 
canavanine [11]. 

Serotypes A or D of C. neoformans can be separated from 
the serotypes B or C of C. gattii after growing on L-canavanine-
bromothymol blue-glycine (CGB) agar medium, which induces 
colony color changes, blue for C. gattii and greenish yellow for C. 
neoformans [16]. Such phenotypic method (chemotyping) is still used 
for species distinction [1], as an alternative when molecular methods 
are unavailable. Furthermore, inaccuracy of some traditional tests can 
be complemented by molecular approaches. 

The cryptococcal antigen lateral flow assay (CrAg® LFA) (Immy, Inc., 
Noeman, OK, USA) is a rapid and accurate lipstick assay that has been 
recently developed for the detection of cryptococcal polysaccharide 
antigen (CrAg) in serum and cerebrospinal fluid (CSF) [17]. It is an 
immunochromatographic based test, which has been proposed for 
qualitative and semiquanitative detection of cryptococcal antigen from 
serotypes of clinical C. neoformans and C. gattii. The assay is simple and 
can be performed in 10 minutes, especially from samples of patients 
with meningitis [17], and presents higher sensitivity and specificity, 
99.3% and 99.1%, respectively, when compared to India ink microscopy, 
culture and CrAg latex agglutination [18]. A systematic review found 
high accuracy of the CrAg LFA in serum and CSF, further suggesting 
its use from urine samples in early stages of the disease [19]. The CrAg 
LFA showed an excellent performance when tested by our group and 
was able to detect the cryptococcal antigen from CSF (-70°C) stored for 
more than one year (data not published yet). CrAg LFA has the potential 
to be integrated as a screening test into HIV care, specifically targeting 
people with severe immunosuppression and to be used in prospective 
epidemiological studies, to define treatment strategies. The assay was 
apparently used for the first time in the diagnosis of cryptococcosis and 
prevention of cryptococcal meningitis in 2013 [20].
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Despite the overall similarity of responses at the phenotypic and 
genetic levels used by the C. neoformans/C. gattii species complex, there 
are important differences between these species, once they diverged 
genetically ~40 million years ago, thus, allowing the sequence data to 
be used for epidemiological purposes [21].

Molecular identification and genomic analysis
The taxonomy, genetic diversity and epidemiology of Cryptococcus 

have been evaluated using several molecular approaches, such as PCR 
fingerprinting [22,23], restriction fragment length polymorphism 
(RFLP) [22], amplified fragment length polymorphism (AFLP) [24-
26], fingerprinting multilocus sequence typing (MLST) [1,27,28], 
multilocus microsatellite typing (MLMT) [29], and whole genome 
sequence [1,30].

Currently, the widely accepted classification of Cryptococcus 
describes eight molecular patterns (genotypes): VNI/AFLP1 and 
VNII/AFLP1A (C. neoformans var. grubii), VNIII/AFLP3 (AD 
hybrid), VNIV/AFLP2 (C. neoformans var. neoformans), besides 
VGI/AFLP4A/AFLP4B, VGII/AFLP6, VGIII/AFLP5A/ AFLP5B/
AFLP5C, and VGIV/AFLP7 (C. gattii) [24, 31]. Using M13 PCR-
fingerprinting and PCR-RFLP analyses of the URA5 gene (orotidine 
monophosphate pyrophosphorylase) with double digested (HhaI/
Sau96I), the IberoAmerican Cryptococcal Study Group typed clinical, 
veterinary, and environmental isolates of C. neoformans and C. gattii 
from Argentina, Brazil, Chile, Colombia, Guatemala, Mexico, Peru, 
Venezuela and Spain into the eight previously established molecular 
types, with the most prevalent type being VNI of the var. grubii, 
of serotype A [22]. Isolates of C. neoformans AFLP1/VNI were 
predominant in patients with AIDS in the State of Mato Grosso, Brazil, 
while HIV-negative patients were most frequently affected by C. gattii 
AFLP6/VGII [32]. Likewise, a higher prevalence of molecular type VNI 
was detected from clinical and environmental isolates from Rio Grande 
do Sul, Brazil [33].

Multi locus sequence typing (MLST) is a molecular typing 
approach proposed by Maiden et al. [34], which exploits the distinct 
characteristics and electronic flexibility of nucleotide sequence 
data, for the characterization of microorganisms, whose data can be 
interconnected between laboratories. The bank indexes sequence 
variations in ~400-500pb of five to ten genes, composed primarily 
by housekeeping genes [22]. C. neoformans and C. gattii are widely 
represented in one of the most complete MLST fungal databases, that 
will allow fast expansion of the data analyses [1], now available into 
the international fungal multi locus database (http://mlst.mycologylab.
org/DefaultInfo.aspx?Page=Home). The site provides searching tools 
for sequences or allele types, pairwise ID using the polyphasic ID 
algorithm of BioloMICS, pairwise identification based on single locus 
using Blast, deposit data for new sequences and primers and PCR 
amplification conditions. 

In order to increase automation and make the MLST more 
versatile, Chen et al. [35] proposed a multiplexing approach (based 
on seven MLST loci), the new generation multi-locus sequence 
typing (NGMLST), connected to an automated software program for 
data analysis, the MLSTEZ. The authors focused on nine MLST loci 
(CAP59, GPD1, IGS1, LAC1, PLB1, SOD1, URA5, TEF1 and MPD1 of 
Cryptococcus [28], to generate profiles with high quality and specificity 
when compared to the ones of the reference strains.

Genetic studies have allowed the evaluation of pathogenicity and 
virulence aspects on Cryptococcus strains. The genome of related C. 

neoformans var. neoformans strains (JEC21 and B-30501A) covers 
approximately 20Mb organized in 14 chromosomes, with ~6,500 
introns, ~5% constituted by regions of rRNA repeats and 5% of 
transposons (40-100Kb), contributing to karyotype instability and 
phenotypic changes [36]. C. neoformans var. grubii H99 has been 
used for genetic, molecular and virulence studies in recent years and 
also presents 14 chromosomes. Therefore, Janbon et al. conducted a 
whole genome comparison between different serotypes and concluded 
that there are fewer chromosome rearrangements (translocations and 
inversions) between C. var. neoformans (JEC21) and C. var. grubii 
(H99) than when the genome is compared with C. gattii. 

Interestingly, changes in the genome structure of the yeast can occur 
even with a strain laboratory passage or in a situation of environmental 
stress that usually occurs at the site of infection, as at the human 
subarachnoid space [30, 37]. 

Using the whole genome sequencing (WGS) approach, Ormerod 
et al. [38] compared isolates obtained from cerebrospinal fluid during 
infectious process of C. neoformans var. grubii H99 and suggested 
rapid genomic changes and evolution (microevolution) subsequent to 
penetration of the CNS and the administration of antifungal therapy. In 
addition, specific genotypes have been associated with an unfavorable 
clinical outcome [39]. 

The JGI-MycoCosm web portal provides data access, visualization, 
and analysis tools for comparative genomics of fungi, with information 
on JEC21 and H99 strains and all data were incorporated into JGI 
MycoCosm to functionally annotate the predicted genes (http://
genome.jgi.doe.gov/Cryne_JEC21_1/Cryne_JEC21_1.home.html). 
Using an expressed sequence tags (ESTs) to compare the genomes 
of C. neoformans var. grubii and C. neoformans var. neoformans after 
gene annotations, Loftus et al. [36] found that introns, alternative 
splicing and antisense transcription are very frequent in C. neoformans. 
In a transcriptional approach (using RNA-seq), Janbon et al. [30] 
compared the whole genome of H99 strain with others: C. neoformans 
(JEC21) and C. gattii genomes, CVI (WM276) and VGII (R265). The 
comparison between C. neoformans genome showed overall similarities 
under the same environmental conditions and found few chromosomal 
rearrangements, despite single nucleotide variations and novel genes. 
However intron splicing, strand-specific transcription, and non-coding 
RNAs were identified [30].

A new approach, sequence based and abundance-weighted was 
implemented to improve the performance of fungal detection and 
quantification, named the new-generation sequencing (NGS). The 
approach was applied for several fungi with 454 pyrosequencing 
of rDNA ITS regions, including Cryptococcus, and the results 
showed higher proportion of this yeast in samples obtained from 
bronchoalveolar lavage of HIV-positive patients than in the samples 
obtained from healthy individuals [40].

A simple, fast and accurate technique for identification of different 
microorganisms based on mass spectrometry has been applied over 
the last decade, named MALDI-TOF (matrix-assisted laser desorption 
ionization-time of flight). It is an alternative to phenotypic and 
genotypic approaches, and allows the construction of a proteomic 
profile from mass spectral evaluation of yeasts medically important, 
allowing their rapid and accurate identification [41,42], and distinction 
of Cryptococcus neoformans from C. gattii [43].

The methodology is based on the fact that each microorganism 
forms a unique mass spectral pattern of peptides and proteins and an 
unknown microorganism can be identified after comparing its spectrum 
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with the ones in a reference spectral library [44]. Using this approach, 
Firacative et al. [43] could identify 100% of the 164 isolates tested, 
and distinguish C. neoformans from C. gattii. Moreover they could be 
further separated into the eight major molecular patterns. Danesi et al. 
[45] created an in-house library for a set of nine species uncommonly 
reported in human and animal cryptococcosis, including, C. albidus and 
C. laurentii, to make timely and correct identifications using MALDI-
TOF MS in a routine of laboratory diagnostics. Currently one limiting 
factor for the identification using this technology is that commercial 
reference libraries contain a limited number of spectra for Cryptococcus 
strains.

In conclusion, it is important to direct investigations about 
mechanisms of the cryptococcal disease and to search for answers on 
the clinical aspects of affected patients, mostly immunosuppressed. The 
“Rede Brasileira de Criptococose” (RBC), in which the group of Alagoas 
takes part, integrates several laboratories around Brazil to research 
the diversity and ecology of Cryptococcus species through molecular 
typing and about clinical-epidemiology of the disease. Novel methods 
for accurate and rapid identification of pathogenic Cryptococcus spp. 
in the laboratory routine should also be explored. In addition, the 
maintenance of global epidemiology surveillance is imperative to 
monitor disease outcomes.
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