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The bone is a very important organ that supports is one of the 
many bodily functions. It has very diverse functions from the general 
support of the human body to energy regulation and balance [1]. Bones 
are formed during the development either through intramembranous 
(flat bones) ossification or endochondral ossification (long bones) [2-
4]. The human body is composed of over 270 bones at birth and fuse 
to become 206 in totals at adulthood that all hold crucial functions. 
Bones consisting of mineralized bone tissue also consists of bone 
marrow, nerves and blood vessels and the communication between 
cells in the tissues is tightly regulated by the bone environment. Bone is 
an active tissue that is maintained by bone cells such as osteoblasts that 
form bone and osteoclasts that resorb bone [5]. Additionally, within 
the collagen and mineral matrix osteocytes are also embedded and 
respond to the bone environment [6,7]. The balance between these cells 
is necessary to maintain bone function. Bone research is considerably 
a challenging field due to the intricately dense structural composition 
of the bone morphology. While other tissues can be easily processed 
and prepared for experiments, working with bone is difficult [8,9]. Due 
to its composition of collagen fibers and minerals, bone creates a very 
dense structure, in which the bone cells are embedded [10]. Therefore, 
studying intracellular dynamics of the bone cells embedded within the 
mineralized tissue has proven to be challenging a task.

Imaging cells at subcellular level within the bone environment is 
very challenging. Conventional intracellular studies are performed on 
decalcified thin tissue slices embedded in paraffin [9]. However, this 
kind of bone sample preparation can lead to significant changes in bones 
biochemical properties of antigenicity and to its mineral structure [9]. 
Alternatively, non-decalcified bone samples can be processed in resin 
based polymers and be labeled fluorescently for target proteins [8,11,12]. 
However, current methods are tedious and very limited. Most approaches 
used to image cells within the bone such as MRI, Micro-CT or Ultrasound 
can image bone structure and recently cells, however these techniques are 
limited by their low resolution at the cellular level [13].

Tissues embedded within the bone itself such as the bone marrow 
niche and blood vessels are easier to analyze. For example real time 
imaging of the bone marrow niche within bone was recently achieved 
[14,15]. Similarly, fluorescent imaging of cells within the bone marrow 
niche was also achieved [16]. However, determining the localization of 
cell types and protein expression dynamics of single cells within the 
bone is still very difficult. Recent advancements in imaging techniques 
allows for the identification of osteocytes embedded in the bone matrix 
[17]. However, more research is needed to identify intracellular protein 
activities of the cell bodies embedded within mineralized matrix.

Alternatively, researchers study cell dynamics in ex vivo models. 
Several ex vivo models of bone are developed to study cellular dynamics 
of bone [18-21]. These novels ex vivo bone cultures are proposed for 
studying inflammatory responses, cancer metastasis, and also Zetos 
bone bioreactor used to study bone growth utilizing mechanosensitive 
loading are a few good examples [19,22,23]. These ex vivo models 
can overcome many ethical and clinical issues that are otherwise 
not permissive for animal or human trials. Such model systems also 
allow for the imaging of bone cells more feasible [24]. One model for 
example uses trabecular bone samples and replaces the cells in the 3D 

architecture with live cells. This allows for a controlled environment 
within the ex vivo model structure to study bone cell function [25]. 
Other researchers try to recreate specific bone environments for cells 
by using hydrogels or porous microspheres to support 3D growth of 
cells [26,27]. As these data show the cells in a 3D environment show 
often completely different cellular dynamics as compared to their 2D 
cultures [28]. Although mimicking the tissue environment through 
ex vivo model systems makes a significant breakthrough in testing 
cellular responses but it is still hard to replicate the exact environmental 
processes.

To better understand bone function we desperately need the 
development of new protocols and methods to drive bone research. 
This is especially important to address the cause of bone diseases and 
their possible treatment options. Bone diseases such as osteoporosis 
tremendously impact on the quality of life of individuals. Musculoskeletal 
diseases affect one out of every two people in the United States age 18 
and over, and nearly three out of four age 65 and over [29]. However, in 
order to develop treatments one needs to understand the basic cellular 
mechanisms first.
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