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Introduction
An extremely common phenomenon in nonlinear dynamical 

systems arising from a variety of disciplines is chaos. Chaotic 
dynamics is interesting to analyse but for technological processes like 
optimization of the production in a production farm chaos is highly 
unwanted or even harmful. Therefore, strategies are required to devise 
control algorithms capable of achieving the desired type of behaviour 
from a chaotic system. There has been many techniques for designing 
effective control of chaotic systems but very few of these methods are 
applicable to control a biological systems like food chain models [1-
4]. Many authors proposed harvesting model for ecological systems 
[5-8]. But none of these are very useful from applied point of view 
because harvesting at every time is not realistic and meaningful for 
many biological systems. Those methods also required knowledge of 
functional response and knowledge of system parameters.

Now, we shall discuss a new harvesting mechanism. 
Consider a general N-dimensional food chain model 
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dt
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Where X=(x1, x2,…….., xN) are the state variables. Let the variable xi 
is chosen for harvesting. The threshold harvesting strategy is as follows. 
We shall check the population size represented by the state variable xi 
at regular interval of time. At the time of checking if the population of 
variable xi   exceeds a critical population xi  

*, then harvesting will be done 
and collect (xi  - xi  

*
) number of fishes otherwise do not collect any fish. This 

assumption is natural because in fishery because harvesting of fish takes 
place at regular interval of time. Hastings and Powell [1] introduced 
a continuous time model of a food chain incorporating nonlinear 
functional responses and shown that model exhibits chaotic dynamics 
in long term behaviour when biologically reasonable parameter 
values are chosen. Wilson et al. [4] had obtained chaotic dynamics 
in a multi-species fishery. Managing such a chaotic fishery system, 
demands different approach for controlling chaos. Chattopadhyay et 
al. [5] interpret the population of first, second and third species of the 
Hastings and Powell [1] model as the population of the toxin producing 
phytoplankton (TPP), zooplankton and fish respectively. Then according 
to Hastings and Powell [1], the fish population will vary chaotically for 
some biologically significant parameter region. In this work, we have 
shown that threshold harvesting strategy can be applied for controlling 
chaotic fish population and to obtain regular fish population dynamics 

e.g., steady state, limit cycle, period-2, period-4 etc. Here the
thresholding variable is chosen as the fish population variable of the
system. In section-2, the threshold harvesting mechanism is discussed.
In section-3, application of threshold harvesting for controlling chaotic 
dynamics of fish population is demonstrated for chaotic Hastings
and Powell [1] model. In section-4, numerical simulation results are
discussed. Finally a conclusion is drawn in section-5.

Threshold Harvesting Mechanism
Consider a general N dimensional dynamical system, described by 

the following evolution equations
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Where X=(x1, x2, x3,……, xN)are the state variables. Let the variable 
xi, i ϵ 1, 2,….., N is chosen as the monitored variable which we want 
to control. The mechanism for threshold action in this system is as 
follows. Control will be triggered after a finite time interval. Whenever 
the value of the monitored variable exceeds a critical threshold x* and 
the variable xi will then be reset to x*, i.e. 

if  *ix x≤ then no harvesting

if  > *ix x then   *ix x→ .

The dynamics continues undisturbed until xi exceeding the threshold 
value. When it exceeds then control resets its value to x* again. As the 
system parameters are left invariant by this method therefore it acts 
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Abstract
In this paper, we propose a new harvesting strategy namely the harvesting for controlling chaotic population 

in a food chain model. In particular, we have taken the three species Hastings and Powell food chain model for 
demonstration. We have shown threshold harvesting strategy can be effectively employed to obtain a steady or cyclic 
behaviour from chaotic fish population by varying either the frequency of harvesting or the amount of harvesting of 
fish population. Numerical simulation results are presented to show the effectiveness of the scheme. We obtain 
steady state; limit cycle, period-2 and period-4 behaviour from chaotic Hastings and Powell model. This threshold 
harvesting strategy will be very useful for species conservation and fishery management.
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only on state variable. In fact the method requires no knowledge of the 
parameters, which is advantageous for controlling chaos in biological 
systems. The moment thresholding is removed the system is back to 
its original dynamics. The threshold action is necessarily stroboscopic, 
as the threshold condition can be checked only at finite intervals. Here 
we will study the interesting effects of implementing the threshold 
action at varying intervals. We will show that changing the frequency of 
thresholding leads to many different regular temporal patterns. In fact 
very infrequent thresholding is capable of yielding amazingly simple 
and regular behaviour of a chaotic system.

Hastings and Powell Model
In this section, we shall first discuss briefly the Hastings and Powell 

[1] three species food chain model. Hastings and Powell [1] assume 
X as the number of species at the lowest level of the food chain, Y the 
number of species that preys upon X, and Z the number of the species 
that preys upon Y . The model takes the form

0 1 1
0

  (1 -  ) -  ( ) ,dX XR X C F X Y
dT K

=
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representing the functional response. Here T is time. The constant 
R0 is the ‘intrinsic growth rate’ and the constant K0 is the ‘carrying 
capacity’ of species X. The constants C1

-1 and C2 are conversion rates of 
prey to predator for species Y and Z respectively, D1 and D2 are constant 
death rates for species Y and Z respectively. The constants Ai and Bi 
for i = 1, 2 parametrize the saturating functional response, Bi is the 
prey population level where the predation rate per unit prey is half its 
maximum value. With the following dimensionless variables
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 the model takes the form 
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where d2=d′2+ h. where h represents the rate of harvesting. 
Chattopadhyay et al. [5] interpret the variables x, y, z as the toxin 
producing plankton (TPP), zooplankton and fish population 
respectively. They have interpreted the parameters a1, a2, b1, b2, d1 and d′2 
as intrinsic birth rate of prey, intrinsic death rate of predator population 
and h is the rate of harvesting. In this work we interpret the variables x, 
y, z as x as TPP, y as Zooplankton and z as fish population.

Numerical Simulation Results
We apply threshold harvesting technique on Hastings and Powell 

model. We impose threshold condition on z variable here. Because 
in fish population model it is possible to threshold fish population by 
harvesting fish at a regular interval. In the Hastings and Powell model we 
interpret the z variable as fish population. The parameters of the model 
are chosen a1=5.0, a2=0.1, b1=2.8, b2=2.0, d1=0.4, d′2=0.01. For these set 
of parameter values the model have chaotic behaviour. We use Runge 
Kutta 4th order scheme for solving the system with time step 0.005. 
Since thresholding, the variable z is biologically meaningful; we choose 
different threshold values for z together with different time interval of 
control. We start with choosing threshold value (MSY effort)h=hMSY 
=0.5 with control acts at interval δt=0.10, and obtain the time evolution 
of Hastings and Powell model is shown in figure 1. And phase diagram 
in y-z plane is depicted in figure 2. From figures 1 and 2 it is clear that 
Hastings and Powell model is chaotic for the threshold value (MSY 
effort) h=hMSY=0.5 with control acts at interval δt=0.10. Therefore MSY 

Figure 1: The time evolution of Hastings and Powell model under threshold control variable z, with threshold value h=0:5 with control acts at interval t=0:10, the 
chaotic behaviour is shown for the parameters a1=5:0; a2=0:1; b1=2:8; b2=2:0; d1=0:4; d02=0:01.
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is not a stable for the effort h=hMSY=0.5. The chaotic Hastings and Powell 
model under threshold control of variable z, with threshold value (MSY 
effort) h=hMSY=0.13, the control acts at interval δt=0.275, the controlled 
steady state behaviour which is shown in figure 3. From figure 3, it is 
clear that chaotic behaviour of fish population is controlled and steady 

 

 

Figure 2: The Hastings and Powell model under threshold control variable 
z, with threshold value h=0:5 with control acts at interval t=0:10, the chaotic 
behaviour is shown for the parameters a1=5:0; a2=0:1; b1=2:8; b2=2:0; d1=0:4; 
d02=0:01.

Figure 3: The Hastings and Powell model under threshold control variable z, 
with threshold value h=0:13 with control acts at interval _t=0:275, the steady 
state behaviour is shown for the parameters a1=5:0; a2=0:1; b1=2:8; b2=2:0; 
d1=0:4; d02=0:01.

state dynamics is obtained under the threshold harvesting. In this 
case MSY is stable steady state behaviour for the effort h=hMSY=0.13. 
The time evolution of chaotic Hastings and Powell model under 
threshold control of variable z, with threshold value (MSY effort) 
h=hMSY=0.175, the control acts at interval δt=0.15 is shown in 
figure 4, From figure 4 it is clear that chaotic MSY is replaced by 
limit cycle MSY under the threshold control. The same chaotic 
model under threshold control of variable z, with threshold value 
(MSY effort) h=hMSY=0.18, the control acts at an interval δt=0.075, 
obtain period-2 behaviour of the threshold control system which is 
shown in figure 5. The model under threshold control of variable z, 
with threshold value (MSY effort) h=hMSY=0.2, the control acts at 
an interval δt =0.095, obtain period-4 behaviour of the threshold 
control system which is shown in figure 5. Therefore by different 
choice of MSY effort we can obtain any periodic behaviour. We have 
employed successfully the threshold mechanism to Hastings and 
Powell model figure 6 and obtain steady state limit cycle, period-2 
and period-4 behaviour of the system. 

Conclusion  

We define the threshold harvesting as the catching of fish after an 
interval of time provided fish population is above some critical value. 
The knowledge of functional response is required for applying almost 
all existing chaos control methods. However, in threshold harvesting 
strategy no knowledge of system parameters and functional responses 
are required. Therefore this method is suitable for controlling chaos 
of many biological or real world systems. A hyper chaotic food chain 
can also be controlled to obtain steady state or low periodic behaviour 
choosing suitable threshold value. The threshold harvesting method 
of chaos control is suitable for any controlling chaotic dynamics of 
a particular state variable of any biological model. Therefore by 
choice of threshold value (MSY effort) we may harvests the fish 
population to MSY. This control strategy is really very useful for 
fishery management of marine ecological systems. This method is 
also applicable for biological conservation of species in real world 
biological systems.

Figure 4: The time evolution of Hastings and Powell model under threshold control variable z, with threshold value h=0:175 with control acts at interval t=0:15, the 
limit cycle behaviour is shown for the parameters a1=5:0; a2=0:1; b1=2:8; b2=2:0; d1=0:4; d02=0:01.
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