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ABSTRACT

Female Aedes aegypti and Anopheles gambiae mosquitoes are living vectors liable for transmitting many parasitic and 
dreadful viral diseases. The major target is acetyl cholinesterase (AChE) 1 enzyme for the parasite transmission. 
Anopheles gambiae carries AgAChE1 enzyme responsible for the malaria parasite whereas Aedes aegypti carries 
AaAChE1 enzyme that injects dengue, yellow fever, Zika, and chikungunya viruses to the healthy individuals. These 
vector-borne infections are now a major public threat. Deforestation and global warming may cause drastic change 
of the climate which causes vector-borne disease to re-emerge worldwide. Control of mosquito vector saves many 
lives. One of the mechanisms to kill the mosquito vector is to use insecticides such as chlorinated hydrocarbons, 
organophosphates, carbamates, and pyrethroids recommended by the World Health Organization (WHO). These 
are covalent inhibitors of acetyl cholinesterase enzyme and their accumulation may produce ecotoxicity to the non-
targets including aquatic animals and humans. It was shown that non covalent phenoxyacetamide-based inhibitors 
can specifically target acetyl cholinesterase (AChE) 1 responsible for the vector transmission. Therefore, an attempt 
has been made to explore AChE1 target via ligand based quantitative structure-activity relationship (QSAR) 
modeling on phenoxyacetamide-based compounds to predict crucial features of these inhibitors responsible for the 
design of highly active ligands.

Keywords: Aedes aegypti mosquito vector; Computed structural descriptors; GA-MLR based QSAR; AChE1; 
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INTRODUCTION

Vector-borne diseases are the infections which are transmitted 
via living organisms that represent the vector. These vectors are 
mosquitoes, ticks, flies, sandflies, fleas, triatomine bugs, and some 
fresh water aquatic snails. The disease-vector bites an infected animal 
or human and then transmits pathogens through blood meals 
between vertebrate host animals and humans. Thus the infection 
spread from an infected fellow to the healthy individuals [1,2]. 
Vector-borne infections become a pandemic threat because more 
than one billion people get infected each year, engulfing more than 
7,00,000 annual deaths caused by malaria, dengue, schistosomiasis, 
human African trypanosomiasis, leishmaniasis, Chagas disease, 
yellow fever, Japanese encephalitis, and onchocerciasis, globally 
[3]. Since 2014, outbreaks of dengue, malaria, chikungunya, yellow 
fever and Zika have claimed a strong helmet over the health system 
protection in many countries. Therefore, control of the mosquito 
vector is a major target nowadays [3]. Four types of insecticides 
including chlorinated hydrocarbons, organophosphates, 

carbamate, and pyrethroids were recommended by the World 
Health Organization (WHO) for controlling mosquito-vectors [4,5]. 
These compounds can damage the neurotransmission signaling 
system. Acetylcholine (Ach) releases into the synaptic cleft where it 
binds to Ach receptors at the post-synaptic membrane, transferring 
the signal to downstream nerve cells. Acetyl cholinesterase 
(AChE) causes breakdown of the Ach to produce choline which 
is being re-used for further synthesis of Ach to proceed synaptic 
signaling system. Inhibition of AChE causes an accumulation of 
acetylcholine, leading to overstimulation and then paralysis of the 
nervous system [6,7]. Therefore, inhibition of AChE is a major 
target to control the mosquito vector. 

Insecticide resistance and toxicity become a major drawback 
[8,9]. To quest least toxic chemicals, covalent inhibitors such as 
carbamate derivatives and difluoromethyl ketones were being 
developed as inhibitors of AChE1 and AChE2 enzymes responsible 
for transmission of vector found in Anopheles gambiae (AgAChE1; 
vector of the malaria parasite) and Aedes aegypti (AaAChE1; vector of 
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Table 1: Biological activity data.



3

Naaz A, et al. OPEN ACCESS Freely available online

J Develop Drugs, Vol. 8 Iss. 1 No: 192

the dengue, yellow fever, Zika, and chikungunya viruses). But these 
compounds failed due to lack of desired selectivity and potency 
[10-12]. Therefore, much more attention was paid nowadays on 
to the discovery of non-covalent inhibitors acetylcholinesterase 1 
(AChE1) as the role of AChE2 is still not fully understood [13-18]. 

Alout et al. [19] tested a non-covalent, reversible class of 
pyrimidinetrion furan-substituted compounds that showed 
promising potency on AgAChE1 and AgAChE1-G122S both in 
vitro and on mosquito larvae, however, the selectivity profile of 
these compounds was not reported. Knutsson and co-workers [20] 
developed many N-aryl-N'-ethyleneaminothioureas which proved 
to be inhibitors of AChE1; the most efficient following compound 
showed sub-micromolar potency. Importantly, the inhibitors 
exhibited selectivity over the human AChE (hAChE), which is 
desirable for new insecticides. The structure-activity relationship 
(SAR) analysis of the thioureas revealed that small changes in 

the chemical structure had a large effect on inhibition capacity. 
Knutsson et al. [21] recently discovered a number of non-covalent 
inhibitors that selectively target Acetylcholinesterase 1 (AChE1) 
of the mosquitoes An. gambiae and Aedes aegypti (Ae. aegypti, 
transmitting dengue, chikungunya, and Zika virus infections). 
AChE1 is a validated insecticide target to control mosquito vectors 
of e.g., malaria, dengue, and Zika virus infections. The insecticides 
most commonly used for vector control disrupt the insect’s nervous 
system by inhibiting voltage-gated ion channels (pyrethroids 
and organochlorines) or by inhibiting the essential enzyme 
acetylcholinesterase (AChE) (organophosphates and carbamates). 
The physiological role of AChE is to terminate nerve signaling by 
rapidly hydrolyzing the neurotransmitter acetylcholine. The design, 
synthesis, in vitro and in vivo evaluation of phenoxyacetamide-based 
analogs were done. The aim was to explore the molecular basis 
for the inhibitors’ selectivity for mosquito AChE1 versus hAChE 
and their potency on G122S mutated AgAChE1. In a recent 

Table 2: Best QSAR models.	

Model-1

pIC
50=

8.168(+/-1.164) -0.001(+/-0.0001) ATSC8m -1.147(+/-0.957) VE1_Dze -19.051(+/-2.633) E2e
N=16, R2=0.867, Q2

Loo
=0.809, R2

pred
=0.591, r2

m
 (test)=0.686, SEE=0.323

Parameters Physical interpretation

ATSC8m Centered Broto-Moreau autocorrelation of lag 8 weighted by mass

VE1_Dze The coefficient sum of the last eigenvector from Barysz matrix / weighted by Sanderson electronegativities

E2e 2nd component accessibility directional WHIM index / weighted by Sanderson electronegativity

Model-2

pIC
50=

-3.456(+/-2.773)-0.966(+/-0.299) TDB9r -8.403(+/-0.795) E2v +2.475(+/-0.787) SpMax6_Bhi
N=14, R2=0.938, Q2

Loo
=0.882, R2

pred
=0.789, r2

m
 (test)=0.578, SEE=0.211

Parameters Physical interpretation

TDB9r 3D Topological distance based descriptors - lag 9 weighted by covalent radius

E2v 2nd component accessibility directional WHIM index / weighted by van der Waals volume

SpMax6_Bhi largest eigenvalue n. 6 of Burden matrix weighted by ionization potential

Model-3

pIC
50

=1.127(+/-0.518) + 0.101(+/-0.019) RDF90u + 1.447(+/-0.818) E2m -10.835(+/-1.504) E2v
N=17, R2=0.890, Q2

Loo
=0.803, R2

pred
=0.946, r2

m
 (test)=0.871, SEE=0.313

Parameters Physical interpretation

RDF90u Radial distribution function - 090 / unweighted

E2m 2nd component accessibility directional WHIM index / weighted by mass

E2v 2nd component accessibility directional WHIM index / weighted by van der Waals volume

Table 3: Pearson correlation coefficient between the modeled descriptors.

Parameters of model 1

Parameters ATSC8m VE1_DZe E2

ATSC8m 1.00 - -

VE1_DZe -0.411 1.00 -

E2 -0.117 0.330 1.00

Parameters of model 2

Parameters TDB9r E2v SpMax6_Bhi

TDB9r 1.00 - -

E2v -0.159 1.00 -

SpMax6_Bhi -0.167 -0.545 1.00

Model Parameters of model 2

Parameters RDF90u E2m E2v

RDF90u 1.00 - -

E2m -0.157 1.00 -

E2v -0.123 0.602 1.00
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Figure 1: Descriptors used in current study.
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differential high-throughput screen (HTS) studied against the 
AChE1 enzymes from Anopheles gambiae (An. gambiae; vector of the 
malaria parasite; AgAChE1) and Aedes aegypti (Ae. aegypti; vector of 
the dengue, yellow fever, chikungunya, and Zika virus infection; 
AaAChE1), Engdahl et al. identified a number of non-covalent 
phenoxyacetamide based hits showing potential selectivity for the 
mosquito enzymes over the human enzyme [22]. But there is hardly 
any QSAR formulated on these compounds till date. Therefore, it 
is our target in the present study to explore structural features for 
the design of congeneric potent phenoxyacetamide compounds to 
inhibit AChE1 responsible for the transmission of ZIKV mosquito 
vector. 

MATERIALS AND METHODS

Biological activity data

A total number of 23 phenoxyacetamide derivatives (Table 
1) showing half maximum inhibitory effect on enzyme 
acetylcholinesterase 1 (AChE1) of AaAChE1 that represents Aedes 
aegypti (Ae. aegypti; vector of the dengue, yellow fever, chikungunya, 
and Zika virus infection). The design, synthesis and in vitro activity 
evaluation of phenoxyacetamide-based analogs were done to explore 
the molecular basis for the inhibitors’ selectivity towards mosquito 
AChE1 [21,22]. These inhibitors target the essential enzyme 
acetylcholinesterase which terminates cholinergic transmission 
through rapid hydrolysis of the neurotransmitter acetylcholine. 

Structure formulation and calculation of molecular 
descriptors

All the structures of 23 phenoxyacetamide derivatives were 
formulated using 2D ChemDraw. The 2D structures were then 
converted into 3D modules and the geometries of all compounds 
were fully minimized using MM2 force field considering the 
default conversion procedure [23]. Fully optimized 3D structures 
were browsed into PaDEL descriptor which is freely accessible 
open source software for calculation of theoretical molecular 
descriptors classification into 1D, 2D, and 3D respectively. Many 
1875 structural invariants were calculated using the Chemistry 
Development Kit based on the code of Java language [24,25].

Theoretical molecular descriptors or the structural invariants 
encode molecular configuration and properties in terms of 
physicochemical constitutional, geometrical and three dimensional 
(3D), electrostatic, functional, atom centered fragments and 
topological indices, respectively. Biological activity (pIC

50
) is 

quantitatively correlated with various structural invariants to 
formulate QSAR model in terms of statistical regression methods. 
QSAR based on computed structure descriptors may provide 
a significant tool for the rational design of potent molecule in 
theoretical drug design and discovery research [26-31].

Statistical GA-MLR modeling

1875 descriptors were calculated and reduced to 1071. The reduced 
set of theoretical molecular descriptors (Figure 1) was taken into 
consideration for the development of a quantitative structure-
activity relationship model. Descriptors with perfectly constant 
and highly inter-correlated descriptors were removed considering 
variance and correlation coefficient cut-off values of 0.0001 and 
0.99 using V-WSP algorithm of Nanobridges software [32]. The 
reason is that the highly inter-correlated descriptors may contribute 
chance correlation and produce overfitting of the model. As the 
number of structural predictors greatly exceeds the number of 
compounds, the selection of important predictors is necessary for 
the QSAR modeling. Genetic algorithm-multiple linear regression 
(GA-MLR) has been used for the development of QSAR model 
considering reduced predictors data after variable selection by 
genetic algorithm method [33,34]. The GA methods uses a binary 
string of digits containing the values of “1” or “0” for presence 
and absence of the invariant. The length of each string is the same 
and is equal to the total number of descriptors. Quality of the 
model is calculated by the fitness function by taking 100 different 
random combinations of the calculated molecular descriptors. 

Figure 2: Observed vs. predicted activity of test molecule (model 1).

dvsddp-302\D\Srinivas\4-5-2019\JDD 
r2=0.697

Figure 3: Observed vs. predicted activity of test molecule (model 2).

r2=0.712

Figure 4: Observed vs. predicted activity of test molecule (model 3).

r2=0.971
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Fitness function of each model is formulated in term of Q2
Loo

 or R2 
where, Q2

Loo
 represents cross-validated R2. Values of Q2

Loo
 and R2 

are calculated by the standard equation [27,35,36]. 

RESULTS AND DISCUSSION

Total data set comprise of 23 phenoxyacetamide compounds. A 
number of training and test set was randomly generated. Many 
training QSAR models have been developed utilizing various sets 
of computed molecular descriptors including 1D, 2D, and 3D 
respectively using GA-MLR methods of NanoBridges software. 
The impact of the different classes of computed descriptors on the 
inhibition of acetylcholinesterase1 (AChE1) by phenoxyacetamide 
compounds has been carried out. It was shown that combination of 
1D, 2D and 3D descriptors give highest AChE1 inhibitory impact 
in terms of good quality model evaluation parameters denoted by 
R2 (R is the square root of multiple R-square for regression), Q2

Loo
 

(cross-validated r2) values for the training set, an external validation 
was performed by calculating predictive R2 (R2

pred
) and the standard 

error of estimation, SEE, and modified r2 (r2
m
). R2, Q2

Loo
, R2

pred,
 and 

r2
m
 are calculated by using standard statistical equations [27,35-38]. 

The value of R2 should be greater than 0.6, whereas Q2
Loo

, R
pred

2 
[37,38] and r2

m
 which denotes predictive statistics should be greater 

than 0.5 [39]. Since the data set is small (only 23 compounds), 
three QSAR models with 3 different test set compounds showing 
the best results on the AChE1 synthesis inhibition is given in Table 2.

The training model 1 is based on 70% of total data set whereas 
model 2 is formulated using 61% of the total data set. The 
compound numbers 1, 5, 7, 9, 11, 15 and 17 were treated as a test 
set for model 1 whereas molecule number 1, 8, 12-13 and 15-19 
were taken as a test set in case of development of QSAR model 2. 
Model 3 consists of 74% and 26% as training and test set of the 
total data. Test set molecules are 1, 4, 6, 8, 10 and 17. So diversity 
is there for the training and test set generation. R2, Q2

Loo
, R2

pred,
 and 

r2
m
 for all models 1-3 are acceptable. 

Further, the Pearson correlation coefficient between the descriptors 
which arrived in the best QSAR models 1-3 are given in Table 3. 
It was shown that chance correlation is zero for the developed 
models 1-3 because the correlation between the descriptors was 
calculated as ≤ 0.33 except E2v and E2m which shows 0.602. It is 
also acceptable.

To examine the further predictive power of the models, QSARs 
1-3 are used to predict the biological activities of the corresponding 
test sets. Correlation between observed and predicted activities 
was graphically plotted in (Figures 2-4). The square correlation 
coefficient (r2) between observed vs. predicted activities were 
calculated as 0.697, 0.712 and 0.971 respectively which stands 
significant model validation.

From the QSAR results, it was shown that ATSC8m, VE1_Dze, 
E2e, TDB9r, SpMax6_Bhi, RDF90u, E2m, and E2v are important 
descriptors captured in the training QSAR models 1-3 responsible 
for producing inhibition of target enzyme AChE1.

CONCLUSION

QSARs 1-3 depicted that these molecules should produce the 
ionizing potential which represents electronegativities and 
electrostatics interaction towards receptors. It was captured by 
modeled parameters including VE1_Dze, E2e, E2v, SpMax6_Bhi 
and RDF90u invariants of the phenoxyacetamide. From the above 

QSAR study, it was predicted that these compounds should not 
produce covalent linkage towards AChE1. It is denoted by the 
property TDB9r with negative regression coefficient which focuses 
on 3D topological radius distance based covalent radius already 
captured in QSAR model 2.

Out of these three QSAR, model 3 represents the best results. The 
modeled parameters RDF90u encodes radial distribution function 
which is correlated with the electronegativities due to electron 
delocalization. The parameter E2m representing 2nd component 
accessibility directional WHIM index/weighted by mass encodes 
the atomic distribution and shape. In this QSAR study, it was 
also found that the groups having higher van der Waals radius 
are not favorable. Therefore small electron-withdrawing groups 
such as Cl, Br, F, and CCl

3 
responsible for

 
electron delocalization 

may be favorable to produce potent congeneric phenoxyacetamide 
compounds having inhibition of AchE1 enzyme. Thus it is an 
attempt to Control of Aedes aegypti mosquito vector transmitting 
dengue, yellow fever, chikungunya, and Zika virus infection.
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