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Abstract

The Human T-cell Leukemia Virus type 1 (HTLV-1), is the first retrovirus associated with a human cancer. HTLV-1
is the causative agent of an aggressive and fatal malignancy of CD4+ T lymphocytes known as Adult T-cell
Leukemia lymphoma (ATLL). Since the discovery of the virus in 1980, intensive investigations have been undertaken
to determine how HTLV-1 drives the transformation process in infected cells. This is because the oncogenic features
of HTLV-1 make it an excellent tool to dissect the molecular pathways involved in cancer development. More
important, HTLV-1 induced leukemia is a typical inflammation-mediated malignancy with constitutive activation of the
NF-kB pathway, which is also a critical determinant in many other cancers. How NF-kB contributes to the
leukemogenic process is not completely defined. We recently demonstrated that the NF-kB pathway induces the
expression of inducible nitric oxide synthase (iNOS) in HTLV-1 induced leukemia. iNOS enzymatically generates
nitric oxide, which is an oxidative and nitrosative agent of DNA and proteins. Nitric oxide was found to be associated
with a large number of DNA Double Strand Breaks (DSBs) in HTLV-1 transformed cells. Here, we will review the
major effects of nitric oxide on HTLV-1 induced leukemia.
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Introduction
The Human T-cell Leukemia Virus type 1 (HTLV-1) is the

etiological agent of Adult T-cell Leukemia Lymphoma (ATLL), a rare
and aggressive T-cell malignancy. The transmission of the virus occurs
sexually or by IV drug abuse, but the most efficient way of viral
transmission is through breast-feeding from an infected mother to her
baby [1,2] (Figure 1). This is because the breast epithelial cells regulate
a physiological recruitment of lymphoid and myeloid cells from the
circulation into the milk, while secreting nutritive molecules, antibiotic
substances, growth factors, inflammatory cytokines, and chemokines
[3]. As a result, breast milk allows contact between lymphoid cells
which promotes cell to cell transmission of the virus, a more efficient
manner of virus spread as compared to free particle infection [4,5]. Yet,
for unknown reasons, only a few percent of infected individuals
develop ATLL after a long period of latency [6]. Currently, there is no
way to predict which infected patients will develop ATLL, and there is
no effective treatment for those entering the acute phase of the disease.
Of note, it is still not known whether the integration of the proviral
DNA into specific loci in the human genome has a role in ATLL
development [7]. Moreover, the concept of the monoclonal disease
development has recently been debated as a result of deep sequencing
results, which showed that multiple clones can evolve during
progression of the disease [8]. It is also not understood why ATLL
develops only in CD4+ T-cells, while the virus is present in almost all
lymphoid and myeloid progenitors, including hematopoietic stem cells
(HSC) [9,10]. Data obtained from HTLV-1 infected humanized mice
(HIS) demonstrated that high a frequency of HTLV-1 infection was
found in the double positive T-cells during lymphogenesis suggesting

that lymphoid progenitors constitute the niche of HTLV-1 infection.
The other infected cells either represent the latent reservoirs of the
virus or lack properties to support the process of transformation
[11-14]. Because HTLV-1 infection has evolved mechanisms that
activate CD4+ T-cells and impair the immune CTL response, the
outcome of the disease largely depends on two antagonist factors, the
proviral load and the efficiency of the immune response against the
infected cells [6,15]. Activation of proliferation and inhibition of tumor
suppressors are also two major hallmarks of oncogenic events
occurring during the long period of latent infection. However, the
accumulation of genetic defects is believed to be a driving force for
transformation [16]. How and when these genetic defects accumulate
is still under intense investigation.

Over the last decade, there is increasing evidence that inflammation
is a hidden force that drives many malignancies [17-20]. More than
90% of cancers are associated with some forms of chronic
inflammation, which are induced by infections, obesity, use of tobacco,
and exposure to different mutagenic agents. Most likely, inflammation
is related to cancer through processes that involve genotoxicity,
aberrant tissue repair, proliferative responses, invasion and metastasis.
In contrast to somatic inherited mutations, inflammation may induce
random mutations, which will contribute to additional cooperating
events for the initiation and maintenance of the transformation
process [21,22]. HTLV-1 induced leukemia is a typical inflammation-
mediated malignancy with constitutive activation of the NF-kB
pathway [23], which is also a critical determinant in many other
cancers [24-29]. The NF-kB pathway activates the expression of a large
number of genes involved in immunity and the inflammatory
response, apoptosis, proliferation, differentiation, and survival [30,31].
Cytokines and chemokines are the first effectors of the inflammatory
response [32]. They contribute to the proliferation of pre-neoplastic
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cells, but little is known about the downstream effectors that are
involved in this process, and whether a specific connection exists
between NF-kB activation and accumulation of genetic defects [25].

Figure 1: Characteristics of HTLV-1 associated malignancy.
Number of infected individuals and their world endemic
distribution as well as the mode of the virus transmission and the
prevalence of the disease. Although HTLV-1 infect other
hematopoietic cells, ATLL is a clonal expansion of CD4+, CD3+
and CD25+ T-cells.

The downstream effectors pose another level of complexity during
the inflammatory response. Many of them act as double edged swords
with beneficial and detrimental effects, depending on the physiological
environment and magnitude of expression [33]. They are mainly
involved in fighting infection and inflammatory conditions. However
in pre-neoplastic cells in which the apoptotic machinery has been
compromised, the inflammatory downstream effectors may induce
constitutive damage that drives the transformation process [34].

Inducible nitric oxide synthase (iNOS) is one of the most common
downstream inflammatory effectors. It was found to be overexpressed
in chronic inflammatory diseases as well as in various types of cancer
[35-45]. iNOS is an enzyme catalyzing the production of nitric oxide
(NO), which is an important regulatory molecule in both
inflammation and cancer development [46-48]. NO is the precursor of
the highly reactive nitrogen species peroxynitrite (ONOO-), an
obligatory factor of oxidative and nitrosative modifications of DNA
and proteins [49-52] (Figure 2). It has recently been shown that
selective inhibitors of iNOS, that reduce the release of nitric oxide in
vivo, inhibited the progression of tumorigenesis in several cancers
models [40,53-57]. Moreover, the inhibition of lipopolysaccharide
(LPS) induced NF-kB activation inhibits iNOS expression and NO
production, and inhibits inflammation-mediated tumorigenesis in
mouse models [58-65].

In contrast to other constitutively expressed isoforms, iNOS is only
expressed in response to inflammatory cytokines such as TNF-α and
IL-1β and transcriptional activators, such NF-kB [48,66-69]. In chronic
inflammation models and inflammation-related tumorigenesis, iNOS
may be persistently stimulated by cytokines and NF-kB activation in
the tumor microenvironment. iNOS/NO signaling can also induce
cyclo-oxygenase-2 (COX-2), which is another link between
inflammation and cancer [59,70]. In view of the diverse effects of
iNOS-produced NO, it is important to determine how cells regulate
their iNOS/NO system. Nevertheless, the progressive alterations of
DNA and protein modifications are probably the major outcome. In

the present review, we will focus on these two functions of NO in the
context of HTLV-1 induced leukemia, a representative human
malignancy for which the etiological agent is clearly identified.

Figure 2: Nitric oxide induces a cell damage response as a defense
mechanism. Inducible nitric oxide synthase (iNOS) as well as
oxidases are expressed in response to inflammatory responses,
which are induced by stimuli such as toxicity, hypoxia, infection,
inflammation, radiation, chemical stress and obesity. iNOS and
oxidases produce respectively nitric oxide, NO and superoxide, O2-.
The reaction between O2- and NO generates a much more stable
and highly reactive molecule, peroxynitrite ONOO-. ONOO- is an
obligatory factor for oxidative and nitrosative modification of DNA
and proteins.

Expression of Nitric Oxide Synthases
Three isoforms constitute the family of nitric oxide synthases (NOS)

that catalyze the production of nitric oxide (NO) from L-arginine
[69,71,72]. Neuronal nitric oxide synthase (nNOS or NOS1) and
endothelial nitric oxide synthase (eNOS or NOS3) are constitutively
expressed at steady state in the corresponding tissues, and are involved
in neurotransmission and vasodilation, respectively [69]. In contrast,
inducible nitric oxide synthase is expressed de novo, in response to
inflammatory mediators, and its expression varies depending on the
physiological environment and the magnitude of the inflammatory
response [73,74]. While nNOS and eNOS catalyze low levels of NO
synthesis in a Ca2+ dependent manner, iNOS generates high levels of
NO independent of Ca2+ [75]. iNOS expression has also been detected
in a wide array of cells and tissues, including pulmonary and colonic
epithelium, and hepatocytes, but the immune cells, mainly
macrophages and neutrophils, are considered as the major sources of
iNOS synthesis [36,76-86]. They generate large amounts of NO in the
extrinsic environment, with a primary microbiocidal activity. iNOS
can also be induced and expressed in virally-infected lymphocytes,
specifically T cells, but little is known about its intrinsic effects in
activated regulatory CD4+ T-cells [87-91].

While all nitric oxide synthetases enzymatically catalyze NO
production, they only share 50% amino acid sequence similarity, and
are located on different chromosomes [69,76]. Nitric oxide synthetases
also differ by the mechanisms regulating their expression. Despite the
fact that post-transcriptional, co-translational, and post-translational
regulation play roles in NOS expression, the predominant regulatory
mechanism is transcriptional regulation [71,72,80,92,93]. The
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mechanism of transcriptional regulation of human iNOS is much more
complex than those mediating the expression of constitutively
expressed nNOS and eNOS, as well as the expression of murine iNOS
[94,95].

For almost two decades, murine macrophages were used as a main
research tool for iNOS investigations. A combination of
lipopolysaccharides (LPS) that activate the Toll-like receptor, and
interferon-γ (IFN-γ) that activates the interferon type II response
through JAK1/STAT1 pathway was sufficient to induce the expression
of murine iNOS [96-101]. However, human iNOS involves a complex
mechanism of transcriptional regulation that requires a mixture of
cytokines and transcription factors. There is considerable evidence to
suggest that many signaling pathways are involved in human iNOS
expression that include IKK-IκB-NF-kB, JAK/STAT, PI3K-Akt, and
MAPKs as well as the ubiquitin-proteasome degradation pathways.
NF-kB, AP1, STAT1α, IRF-1, Oct1, C/EBPβ, ATF-2 and cAMP
responsive element are specific transcription factors that have been
described to interact and activate the human iNOS promoter
[72,94,100,102-117]. iNOS expression can also be stimulated in
hypoxic conditions, and HIF-1α is one of the transcription factors that
participate in the induction of iNOS expression [118,119].

Regulation of the Expression of Inducible Nitric Oxide
Synthase in HTLV-1 Infected Cells
Significant questions have been addressed to understand the effect

of iNOS/NO on tumor biology. High expression of iNOS has been
targeted by selective inhibitors in many animal cancer models,
including colon, breast, prostate, bladder, skin, esophageal, and head
and neck cancers, but the mechanisms that involve iNOS/NO in
tumorigenesis are yet to be determined [120-135]. It is very important
to clearly delineate the mechanisms of iNOS expression and NO
production and their effects in the tumor microenvironment before
designing prevention and therapeutic strategies that target iNOS/NO
signaling. This is because iNOS/NO signaling has an extrinsic effect,
with anti-infection and anti-tumoral actions mainly generated by
macrophages and neutrophils, while its intrinsic effect has a tumor
promoting activity within the infected/inflamed cells. Therefore, it is
more relevant to explore iNOS/NO signaling in a virally-induced
tumor like HTLV-1 induced leukemia, in which the infected cells
represent the appropriate recipient for investigating the intrinsic effect
of iNOS/NO.

HTLV-1 induced leukemogenesis in CD4+ T-cells is mediated by
the expression of the viral oncoprotein Tax [6,16,23,136-140]. Among
its many oncogenic functions, Tax induces a potent inflammatory
response through activation of the NF-kB pathway. Because Tax has an
intermittent expression during the early stages of infection and it is
rarely measureable during the acute phase of the disease, it is still not
clear whether Tax exerts different functions between these two phases
of virally-induced tumorigenesis [6,138,141]. In fact, Tax follows the
approach of “hit and run”, in which it promotes the oncogenic events
during the infection course and it hides to prevent its elimination by
the immune CTL response. Although Tax induces irreversible events
that lead to the transformation of HTLV-1 infected lymphocytes, its
expression might still be required to maintain the ATLL malignancy at
later stages [138]. Most likely, Tax drives the initial events of
immortalization in HTLV-1 infected cells through the expression of
inflammatory mediators by NF-kB activation. In fact, Tax transgenic
mouse model develop an ATLL like disease, and express high levels of
TNFα, IL-1β, IL-6 and IFNγ, which participate in iNOS

expression[140,142]. Moreover, we and others have demonstrated high
levels of iNOS expression in HTLV-1 infected cells and this activation
required the NF-kB pathway [87,143,144].

We recently reported a comprehensive study, in which we
investigated the mechanism of iNOS expression in HTLV-1 infected T-
cells (Figure 3). By using a human iNOS promoter reporter and small
interfering RNA, we demonstrated that an activation of the classical
NF-kB pathway was sufficient to activate iNOS expression by HTLV-1
Tax, and this activation involved a combination of both NF-kB and
JAK/STAT pathways [87]. Moreover, we reported an increase of the
active phosphorylated form of the signal transducer and activator of
transcription, p-STAT1, and the interferon regulator factor 1, IRF-1 in
HTLV-1 and Tax expressing cells. We also demonstrated that JAK1/
STAT1 activation by type II interferon, but not type I interferon, is
required to induce iNOS expression. In addition to NF-kB
transcription factors, p-STAT1 and IRF-1 have previously been
reported to activate iNOS expression in chronic inflammation models
[145-147]. Interestingly, the inhibition of the JAK/STAT pathway by
ruxolitinib, a JAK1/JAK2 inhibitor reduced iNOS expression and NO
production. Although JAK/STAT activation is intended to induce an
interferon-dependent, antiviral response, its role in HTLV-1
transformation was not well defined [148]. Interestingly, a recent study
showed that a combination of ruxolitinib and navitoclax, a Bcl-2/Bcl-xl
inhibitor, dramatically lowered tumor burden and prolonged survival
in an ATL murine model [149]. This combination strongly blocked ex
vivo proliferation of ATL patients’ PBMCs, indicating that JAK/STAT
pathway promotes the proliferation of HTLV-1 infected cells.

Figure 5: S-nitrosylation of Key proliferative proteins – In addition
to the well-characterized NO function as a signal transducer, S-
nitrosylation, which is a covalent addition of NO to the thiol group
of cysteine, has emerged as a major post-translational modification
of proteins. Over the past decade, the number of substrates
modified by S-nitrosylation has considerably increased to include
the small GTPase Ras, the protein kinase AKT, and the phosphotase
and tensin homolog PTEN, which are all examples of proteins
involved in proliferation, cell survival and tumorigenesis. S-
nitrosylation was found to be a major player in their respective
functions.
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Whether iNOS/NO signaling induces and/or maintains the
immortalization process in HTLV-1 infected cells is not clear. But, the
establishment in vitro of newly infected PBMCs with an HTLV-1
infected cell line showed that new infection was associated with an
increase of iNOS expression, suggesting that de novo expression of
iNOS is induced with productive infection. The high level of
expression of iNOS, which is detected in HTLV-1 transformed cell
lines and in ATLL patients’ samples, also suggest that iNOS/NO
signaling is required to maintain the phenotype of HTLV-1 induced
leukemia [87].

Origin of Genomic Instability in HTLV-1 Infected Cells
Genetic instability is defined by increased rates of DNA damage and

by the inability to maintain a faithful integrity of the genome within
the infected cells. Although DNA damage is continuously created by
multiple sources, cells have evolved mechanisms that include tumors
suppressors, cell cycle checkpoints, and DNA repair pathways to
control genomic integrity. Consequently, DNA damage is repaired, or
if it is left unrepaired, the cell will activate apoptosis.

In HTLV-1 infected cells, the origin of genetic instability was
associated with defects in different DNA maintenance mechanisms: i)
Amplification of centrosomes, a common cause for improper
distribution of chromosomes and aneuploidy, which are two hallmarks
of malignant cells. ii) Inactivation of cell division checkpoints, such
Anaphase-promoting complex (APC) and mitotic spindle checkpoint
(MSC) proteins, such MAD1 and MAD2, lead to chromosome
missegregation and accumulation of multinucleated cells, which is a
common phenotype of ATL cells. iii) Induction of DNA double strand
breaks (DSBs) and inhibition of DNA damage repair pathways are also
responsible for genetic defects in HTLV-1 infected cells. While other
HTLV-1 viral proteins have been involved in the regulation of genomic
instability, the Tax oncoprotein was described as the main modulator
of these defects. DSBs are the most detrimental forms of DNA damage
because they pose problems for replication, transcription, and
chromosome segregation, and are often the origin of mutations found
in malignant cells. DSBs were found increased in HTLV-1 and Tax
expressing cells, suggesting that Tax is able to induce DSBs and inhibit
DNA damage repair response. The majority of these DSBs were
recently attributed to the high levels of iNOS-produced NO in HTLV-1
infected cells. In fact, the inhibition of iNOS activity by the selective
inhibitor 1400W (N-[[3-(amino methyl) phenyl] methyl]-
ethanimidamide, dihydrochloride) reduced the number of DSBs in
HTLV-1 infected by 60%, as observed by immunofluorescence staining
of γ-H2AX foci. However, the genetic depletion of iNOS expression by
a specific shRNA and complete inhibition of NO production
eliminated the majority of DSBs from HTLV-1 infected cells. Under
the same conditions, the active phosphorylated forms of ATM, ATR,
53BP1, Chk2 and H2AX of the DNA damage response were abolished.
Similar results were obtained in the same study by comet alkaline
assays that functionally test the DNA single and double strand breaks
at the level of single cells. In the presence of an iNOS inhibitor or by
genetic depletion of iNOS expression, the comet tails were significantly
reduced, suggesting an attenuation of DNA damage in HTLV-1
infected cells.

Figure 3: Model of Tax-Mediated Genetic Defects - HTLV-1
induced leukemogenesis is mediated by the expression of the viral
oncoprotein Tax. Among its many oncogenic functions, Tax induces
DNA Double Strand Breaks and inhibits DNA repair responses,
which are two mechanisms at the origin of genetic defects. DSBs,
which are the most detrimental forms of DNA damage, are found to
be induced in HTLV-1 and Tax expressing cells by iNOS-produced
NO and this induction required an activation of NF-kB and JAK/
STAT, p-STAT1, IRF-1 signaling pathways.

iNOS/NO and DNA Oxidation/Nitration
Initial mutations in pre-neoplastic cells are believed to be induced

by DNA oxidative and nitrosative molecules, such as reactive oxygen
species and reactive nitrogen intermediates. NADPH oxidase
(nicotinamide adenine dinucleotide phosphate-oxidase) produces the
superoxide O2-, and iNOS utilizes L-arginine to generate NO. Both
superoxide and nitric oxide are unstable molecules. However, the
reaction between O2- and NO generates a much more stable and
highly reactive molecule, peroxynitrite ONOO-. ONOO- is an
obligatory factor for oxidative and nitrosative modification of DNA
and proteins. DNA oxidative/nitrosative damage is seen as
modification of deoxyribonucleic acid, and it mostly occurs on
guanine (G) because of its high oxidation/nitration potential relatively
to cytidine, thymidine, and adenine (Figure 4). The hydroxyl at the C8
position of guanine is oxidized to generate 7,8-dihydro-8-
hydroxyguanine (8-OHG), which forms 8-oxo-dihydroguanine (8-
oxo-dG) or the ring-opened 2,6-diamino-5-formamido-4-hydroxy-
pyrimidine (FapyG), two of the most abundant oxidative DNA adducts
[150-152]. In order to be repaired, the oxidized guanine, 8
hydroxyguanine (8-oxo-dG), or the nitrated guanine (8-nitro-dG)
(Figure 4) must be removed by a specific DNA glycosylase and
repaired as a single strand mutation by base or nucleotide excision
repair (BER or NER) (for an excellent review, see ref [150]). If it is not
repaired, the modified guanine will have preference to pair with an
adenine during the synthesis of DNA. However, modifications on
adjacent guanines of both strands, which is followed by excision of the
modified nucleotides often creates double strand DNA breaks (DSBs)
that will be repaired by one of the two most common DNA repair
pathways, homologous recombination (HR) or the non-homologous
end joining (NHEJ) [153-155]. If the type of DNA damage occurs
during the DNA replication in the S-phase of the cell cycle, the DNA
will be faithfully repaired by the HR DNA repair pathway. If DNA
damage occurs at other phases of the cell cycle (G1 or G2), the DNA
repair will be directed by the error-prone NHEJ pathway and will
create permanent deletions in the genome [156,157]. Thus, these type
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of DNA damage caused by oxidation that constitutes a danger to the
affected cell is totally arbitrary [156].

Figure 4: NO and its derivative products oxidize and nitrate DNA
and cause DNA modifications that are at the origin of DNA double
strand breaks. Although all deoxyribonucleic or ribonucleic acids
can be oxidized or nitrated, guanine (G) has the highest oxidation/
nitration potential. Two of the most abundant oxidative DNA
adducts are the 7,8-dihydro-8-hydroxyguanine (8-oxo-dG), and the
8-nitro-2'-deoxyguanosine (8-nitro-dG), which are generated by
oxidation and nitration of the hydroxyl at the C8 position of
guanine, respectively.

In chronic inflammatory models, we can imagine a scenario in
which continuous mutations by oxidation/nitration are randomly
created until a combination of selectively stable mutations have
initiated the immortalization process [157]. Another set of mutations
are probably required to switch on the transformation process.
Consequently, the incidence of a given malignancy is random and it
depends on the frequency of mutations incurred during an oxidative
exposition. Here, it is important to analyze the mutation signature of
different cancer models to understand this phenomenon, in which
lung carcinoma and melanoma are incurring the highest rate of
mutations because they are exposed to the maximum oxidation and
ionization factors [158]. In fact, the oxidative/nitrosative damage is a
continuous process that does not stop once transformation of a clone
of cells is switched on. This is perceived by the presence of
heterogeneous clones in cancers [159] in vivo, and by continuous
expression of oxidative agents in transformed cell lines in vitro [87].

iNOS/NO and S-nitrosylation of Proteins
NO is also a major source for protein S-nitrosylation, a covalent

modification of cysteine thiol. The list of proteins modified by S-
nitrosylation is currently gaining more attention [160] because
emerging data has shown a role of S-nitrosylation in multiple pathways
important for tumorigenesis [62,161-165]. NO, specifically generated
by iNOS, is extremely important for S-nitrosylation, and its resultant
signaling pathways. Experimental data elucidated a correlation
between iNOS-mediated nitrosylation and an aggressive tumor
phenotype for breast cancer, lung cancer, colon cancer and prostate
cancer [166]. The small GTPase Ras, the protein kinase AKT, and the
phosphatase and tensin homolog PTEN are all examples of proteins
involved in proliferation, cell survival and tumorigenesis. S-
nitrosylation was found to be a major player in their respective
functions.

Modification of a single conserved cysteine residue in the small
GTPase Ras (Cys118 in human H-Ras) was one of the earliest
described targets of S-nitrosylation [166]. This modification stimulates
guanine nucleotide exchange and downstream pathways, including
activation of mitogen-activated protein kinase signaling (MAPK).
Recent findings showed that iNOS expression promotes tumorigenesis
in ER-negative breast cancer by a mechanism in which NO induces S-
nitrosylation of wild-type Ras, leading to phosphorylation and
activation of the transcription factor Ets-1 through the Ras/MEK/ERK
pathway [166]. Interestingly, the Ras protein has been shown to be
involved in the survival of HTLV-1 infected cells [167,168]. Akt is
another multifunctional regulatory protein that is also involved in
cellular metabolism, proliferation and survival. Recent discoveries
showed that Akt kinase activity was augmented when it was
nitrosylated by iNOS at cysteine 224 [169,170]. Why iNOS differs from
other NOS isoforms is still unclear. However, it is likely to be linked to
a specific stimulus that only targets iNOS activation. PTEN, one of the
main phosphotases regulating Akt dephosphorylation, is selectively S-
nitrosylated by low concentrations of NO at a specific cysteine residue
(Cys-83). S-nitrosylation of PTEN inhibits its activity and stimulates
Akt activation [170] (Figure 5).

The dysfunction of Akt and PTEN was extensively studied in
HTLV-1 infected cells [137,171-173]. Whether S-nitrosylation of these
proteins has an effect on HTLV-1 induced leukemogenesis was not
investigated. In the light of the new published data, it is important to
characterize the S-nitrosylation modification of Ras, Akt and PTEN in
those cells, and to functionally test the influence of S-nitrosylation on
the signaling pathway of Ras, Akt and PTEN. Inhibition of NO
production by inhibitors, or by shRNA, the use of Tax mutants
defective in iNOS activation, or the use of Ras C118S, Akt C224S or
PTEN C83S mutants should be investigated to determine the role of S-
nitrosylation on the oncogenic activities of these proteins in HTLV-1
infected cells.

iNOS/NO as a Marker for Diagnosis and Treatment
Nitric oxide is an important cellular signaling molecule involved in

many physiological and pathological processes. The NO synthesized in
the endothelial and neuronal tissues induces vasodilation and
neurotransmission actions, respectively. However, NO generated by
iNOS in the immune cells has a central role in fighting infections, and
it can be extremely mutagenic in chronically infected cells. The genetic
alterations induced by NO are important requirements for induction of
malignancy. iNOS-produced NO seems to play a critical role in cancer
development because it was detected in various cancers and inhibitors
targeting iNOS in animal models dramatically reduced tumorigenesis.
Thus, iNOS/NO signaling can be considered as a novel and potential
therapeutic target and iNOS/NO measurement can serve as useful
assays in providing diagnostic for potential malignancies. Further
experimentation on iNOS/NO signaling is required in order to develop
new strategies for cancer prevention and treatment.
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