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In a post-Fukushima world, defense nuclear disaster planners 
must recognize and be ready for urgent requests for military support 
to mitigate the impacts of a civilian nuclear power plant disaster. At 
both Chernobyl and Fukushima nuclear power plants, explosions, 
leakage, and paramount concerns of the spread of radiation around 
the world led to urgent requests for local and international military 
support to disaster mitigation efforts. A major obstacle to mitigation 
efforts is the threat to life of operating equipment in high radiation 
environments. Unmanned systems promise safety for humans through 
remote operation but risk failure due to radiation damage of electronic 
and communications components. As live testing of equipment in high 
radiation environments is impractical, costly, or prohibited, modeling 
and simulation may identify and better design equipment, optimize 
operational deployments, and maintain readiness of first responders 
thereby better preparing the Department of Defense should an 
accidental nuclear disaster occur in the United States or with one of 
our allies.

The Department of Defense (DOD) has not responded to scores 
of past incidents at United States nuclear plants [1-4]. Given the larger 
scale of Chemical, Biological, Radiological, and Nuclear (CBRN) 
disasters, the federal government does task the DOD to assist civil 
authorities in disasters.

“Joint Task Force Civil Support … gains command and control of 
DOD forces in support of civil authority response operations in order 
to save lives, prevent further injury, and provide temporary critical 
support to enable community recovery [5]” 

With 135 domestic nuclear reactors [6], as many as 30 additional 
licenses currently under review [7] and over 500 nuclear reactors 
operating or under construction worldwide [8], a nuclear disaster with 
the scale of Fukushima or even Chernobyl may occur that necessitates 
a response from DOD [5]. 

Breach of plant defenses against a nuclear disaster at Chernobyl 
resulted in military intervention, but the military response did not 
stop nuclear contaminants from spreading across Europe [9,10]. 
More recently following an earthquake and a subsequent tsunami 
in March 2011, the Fukushima Dai-Ichi Nuclear Power Plant (NPP) 
underwent electrical, generator, and subsequent cooling failures that 
led to partial core meltdowns in boiling water reactors 1-3 [2]. These 
meltdowns led to large quantities of hydrogen being released resulting 
in explosions in reactor buildings 1, 3, and 4. The explosions blew most 
of the roof and walls off leaving debris and releasing further radiation 
into the atmosphere [11]. Reactor building 4’s spent fuel pool (SFP) 
housed 1535 fuel rod bundles with residual radioactive material that 
if overheated would lead to much more radiation release than was 
caused by the meltdowns alone [12]. Responding in depth to the 
breach in the plant’s nuclear disaster containment defenses, manned 
helicopters attempted to stop spent fuel rod meltdown by dumping 
water into cooling pools but dump height and cross winds negated the 
effectiveness of the attempt [13]. Eventually suited manned responders 
installed pumps, designed for liquid concrete, to feed vast quantities 

of fresh water into the cooling pools stabilizing the situation [12]. 
None the less, the breach of the Fukushima Dai-Ichi plant defenses 
and the slow and often ineffective responses resulted in contamination 
of a large area of Japan as well as ocean areas with radiation reaching 
measurable levels in the western United States [14,15]. 

Given the obvious potential for accidental nuclear disasters in the 
United States, the U.S. Nuclear Regulatory Commission conducted a 
systematic and methodical review of U.S. processes and regulations 
recommending a strengthened defense-in-depth strategy. Strategic 
objectives addressed “protecting against accidents resulting from 
natural phenomena, mitigating the consequences of such accidents, 
and ensuring emergency preparedness” [15]. One disaster scenario, 
loss of power to cooling pools, is not only applicable to legacy systems 
like the boiling water nuclear reactors observed at Fukushima, but also 
to newer designs incorporating passive cooling systems. For example, 
the AP1000 nuclear reactor design intends to passively remove heat 
without electrical power for 72 hours, after which its gravity drain 
water tank must be replenished for as long as cooling is required [16]. 

As part of the industry’s post-Fukushima safety strategy, in 2014 the 
U.S. nuclear energy industry took a major step to strengthen accidental 
nuclear disaster defense-in-depth capabilities by adding another layer 
of public protection with the opening of national response centers at 
Memphis, TN and Phoenix, AZ, [17]. History indicates operation of 
response center equipment will be only as effective as the capability of 
the equipment and the skills and preparation of the operators. 

Concern for timely and effective response places a great deal 
of importance on modeling and simulation to provide a basis for 
equipment acquisition, operational planning, continuous training, and 
mission rehearsal of crews [18]. Modeling and simulation of possible 
response scenarios from these centers to nuclear disasters may better 
equip the facilities, improve staging and employment operations for 
such scenarios, and improve the performance of responders. Modeling 
and simulation of the range of equipment scenarios and responses may 
contribute to analysis and acquisition of systems suitable for response. 

In recognition of their mandate to support the nuclear industry 
in the event of a disaster, the Department of the Defense has a lot to 
offer but may not be ready to support in a timely and effective way. 
Currently the Defense Threat Reduction Agency models and simulates 
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many potential nuclear attacks, disaster, and terrorist incidents at a 
level of security not necessarily appropriate for the open literature [19]. 
Relying solely on closed research venues may miss significant potential 
opportunities and miss the creativity found in open markets. Nor do 
closed venues promote discussion in the open defense modeling and 
simulation literature. More open discussion within the wider defense 
community literature about accidental nuclear disaster may generate 
beneficial outcomes resulting in better public protection.

In terms of equipment, at least as far back as 1997, the Department 
of Defense recognized the financial benefit of dual purpose use of 
defense technology for either civilian or defense applications [20]. 
Unmanned helicopters may perform better and more safely in 
nuclear disaster mitigation operations than the manned helicopters 
fruitlessly attempted at Fukushima and Chernobyl [21]. Office of 
Naval Research Autonomous Aerial Cargo/Utility System, the Army 
Manned/unmanned Resupply Aerial Lifter or DARPA’s VTOL 
Experimental Plane, and other Department of Defense programs 
develop unmanned vehicles but they may not have designs suitable for 
the dual-purpose of nuclear disaster response and mitigation. Potential 
dual purpose unmanned helicopters include lift-capable K-MAX, Little 
Bird, unmanned Black Hawk, and Fire Scout. Other potentially dual 
purpose helicopters include re-configuring for unmanned operations 
existing lift-capable helicopters such as the Chinook or Super Stallion. 
If enabled for dual purpose, selected helicopters may be called on in 
the future to contain or mitigate an accidental nuclear disaster. Beyond 
aerial platforms, other Department of Defense unmanned systems 
may also have potential roles in nuclear disaster scenario containment 
and mitigation. These may include submersibles [22], maritime [23-
25] and ground based systems that may “walk” like a person or animal 
[22,26]. Beyond containment and mitigation, Fukushima recovery 
operations employed snake-like and transformable semiautonomous 
robots for inspection and radiation monitoring of the reactor buildings 
and systems [27]. One recommendation from an operator was to avoid 
using “emergency robots as stand-alone machines” supporting the 
dual-purpose notion [27]. Modeling and simulation of dual purpose 
system capabilities as well as possible equipment modifications may 
increase the suitability of Department of Defense acquired equipment 
to serve in nuclear disaster containment, mitigation, and recovery 
scenarios.

Dual purpose equipment designs may infer additional cost for 
radiation hardening that program managers may seek to avoid. 
Department of Defense space system offer high radiation technology 
that may enable successful dual purposing by informing equipment 
designs for high radiation environments. Redundancy and alternative 
path approaches such as a direct link from the UAV to the Control 
Station as well as an alternative path to a Repeater Satellite to the 
Control Station are already in use [28]. When designing electrical 
components that will be used in ionizing-radiation environments one 
must consider the tolerance of the semi-conductors and ensure they 
are “hardened” so that their functionality is not hindered by radiation-
induced degradation [29]. The Air Force recognized the importance 
of radiation-hardened avionics recommending that these systems be 
hardened to a tolerance that can withstand 2270 Rads [30]. Radiation 
levels within one Fukushima containment building found spikes 
reaching 4 Sieverts/h (400 Rads/h) [27]. Nearly 4 years later another 
robot inside the reactor vessel recorded readings up to 9.7 Sieverts per 
hour (970 Rads/h). The robot used to record this data was estimated 
to last 10 hours in the radioactive environment but failed in 3 hours 
[31]. Department of Defense lessons learned through experience as 
well as modeling and simulation of radiation levels, communications 

equipment, communications, and equipment survivability may increase 
suitability and effectiveness of selected dual purpose equipment when 
deployed in nuclear disaster containment, mitigation, and recovery 
scenarios.

Advances in simulation interoperability by the Department of 
Defense reduced stovepipes within the defense modeling and simulation 
community [32-35]. Contrasting with high levels of interoperability 
discussion within the defense community, nuclear industry discussion 
of interoperability training is limited [36,37] between the SCDAP/
RELAP5, MAAP, Rascal, and Sandia National Lab’s MELCOR 
simulations that serve the nuclear community [38-40]. DoD-focused 
Hazard Prediction and Assessment Capability (HPAC) has a past 
history of interoperability and may be licensed from the Defense 
Threat Reduction Agency [41]. The Live Virtual Constructive Chemical 
Biological Radiological Nuclear Explosive Tactical Training System also 
focuses on tracking individuals and maintaining situational awareness 
of ground forces within a CBRNE environment [42]. Advancing the 
level of nuclear modeling and simulation interoperability as described 
by Tolk et al., [43] with emphasis on training simulations will likely 
increase the synergy between these simulations thus increasing 
preparedness of both the nuclear and the defense communities in the 
event of an accidental nuclear disaster.

The defense community has much to offer that may help contain, 
mitigate, or recover from accidental nuclear disaster on the scale of 
Fukushima or Chernobyl if dual purpose design is considered prior 
to a disaster. Modeling and simulation promises enormous benefits in 
saving lives, time, and money; for the rare but potentially catastrophic 
and widespread consequences of accidental nuclear disaster. By way 
of comparison, destructive testing of unmanned systems in a nuclear 
disaster scenario is very costly, time consuming, and may be unsuitable 
due to risk to life caused by radiation. Further, conceptualization, 
development, analysis, testing, training, and mission rehearsal of 
unmanned systems through modeling and simulation may be more 
cost effective while ensuring lives and livelihoods of possibly millions 
in the future. 

One cannot prepare for the countless accidental nuclear disaster 
scenarios that may arise without proper equipment, plans of operations, 
and significant training to use the equipment effectively. Due to the 
severe consequences, researchers and emergency planners must 
continue to pursue innovative approaches to prepare for accidental 
nuclear disasters. By using modeling and simulation to help prepare for 
these disasters we can gain a better understanding of what equipment 
and methods are successful in different scenarios. This will ensure that 
operators can properly train with equipment designed for success. 
Discussion in the wider defense community literature about accidental 
nuclear disaster planning may advance both equipment, operational 
planning, and training solutions resulting in better public protection.  
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