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Abstract

Despite major advances in antiretroviral therapy against HIV-1, an effective HIV vaccine is urgently required to
reduce the number of new cases of HIV infections in the world. Vaccines are the ultimate tool in the medical arsenal
to control and prevent the spread of infectious diseases such as HIV/AIDS. Several failed phase-IIb to –III clinical
vaccine trials against HIV-1 in the past generated a plethora of information that could be used for better designing of
an effective HIV vaccine in the future. Most of the tested vaccine candidates produced strong humoral responses
against the HIV proteins; however, failed to protect due to: 1) the low levels and the narrow breadth of the HIV-1
neutralizing antibodies and the HIV-specific antibody-dependent Fc-mediated effector activities, 2) the low levels and
the poor quality of the anti-HIV T-cell responses, and 3) the excessive responses to immunodominant non-protective
HIV epitopes, which in some cases blocked the protective immunity and/or enhanced HIV infection. The B-cell
epitopes on HIV for producing broadly neutralizing antibodies (bNAbs) against HIV have been extensively
characterized, and the next step is to develop bNAb epitope immunogen for HIV vaccine. The bNAb epitopes are
often conformational epitopes and therefore more difficult to construct as vaccine immunogen and likely to include
immunodominant non-protective HIV epitopes. In comparison, T-cell epitopes are short linear peptides which are
easier to construct into vaccine immunogen free of immunodominant non-protective epitopes. However, its difficulty
lies in identifying the T-cell epitopes conserved among HIV subtypes and induce long-lasting, potent polyfunctional
T-cell and cytotoxic T lymphocyte (CTL) activities against HIV. In addition, these protective T-cell epitopes must be
recognized by the HLA prevalent in the country(s) targeted for the vaccine trial. In conclusion, extending from the
findings from previous vaccine trials, future vaccines should combine both T- and B-cell epitopes as vaccine
immunogen to induce multitude of broad and potent immune effector activities required for sterilizing protection
against global HIV subtypes.
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Introduction
In an USAID global survey, approximately two million new HIV-1

cases were reported in 2015 alone, despite the increased use of the
antiretroviral therapies (ART) to control the global spread of the
infection [1]. Daily administration of ART successfully lowered
circulating HIV load to minimal to undetectable levels in HIV-positive
(HIV+) individuals and prolonged their life to nearly normal lifespan
[2]. In 2015, approximately 17 million of 37 million (46%) HIV+
individuals received ART, incurring tremendous toll on their country’s
economy and on the global community [1,3]. To further minimize the
global spread of the viral infection, ART must be provided to rest 54%
of infected individuals including millions of HIV-negative high-risk
groups as pre-exposure prophylaxis [3]. In 2016, UNAIDS and WHO
projected approximately 33 million HIV+ individuals would be on
ART by 2030, which would lead to a ten-fold decrease (<200,000
individuals) in newly infected individuals and a two-fold decrease
(<400,000 individuals) in individuals succumbing to the HIV infection
[1,3]. Although the rise in the drug resistance has so far been modest,
there is a small portion of cases with high drug resistance in ART-naïve
HIV+ individuals in certain countries; additionally, resistance also seen
in individuals restarting the ART after treatment interruptions [3].
More importantly, the long-term use of the best drug combinations of
ART is still unable to cure HIV infection [2]. The cost of treatment,

potential drug resistance and inefficacy of the existing treatment
underscore the urgent need to develop an effective prophylactic
vaccine against HIV-1.

The current review will describe the findings important to the
development of an effective HIV vaccine with emphasis on B-cell and
T-cell vaccine epitopes through the coverage of the following topics: 1)
Past and present understanding of HIV vaccination, 2) Conserved B-
cell and T-cell epitopes on HIV, 3) B-cell epitopes generating broadly
neutralizing antibodies (bNAbs), 4) Non–neutralizing antibodies
(nAbs) during HIV vaccination and infection, 5) Conserved T-cell
epitopes associated with anti-HIV activity(s), 6) Conserved T-cell
epitopes associated with protective HLA allotypes prevanlent in HIV
endemic countries, 7) Antibodies and T-cell responses enhancing HIV
infection, and 8) Conserved T-cell and B-cell epitopes with potent
anti-HIV activity for HIV vaccine.

Past and present understanding of HIV vaccination
Vaccination changed the conventional disease management; an

effective vaccine can reduce or even eradicate the infectious disease,
which made vaccines as an essential tool against infectious agents.
Several unsuccessful attempts made in the past in the development of
such vaccines provided extensive information that can be used in the
future for more effective vaccines against the virus. Here we reviewed
several vaccination attempts and their cause of failures to protect
against HIV-1. Since the initiation of the first phase-III clinical vaccine
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trial (VAX004) in 1998, three independent phase-III clinical vaccine
trials ended with marginal to no efficacy (Table 1) [4-6]. All of these
trials tested HIV-1 vaccines containing viral envelope (Env) protein(s)
[4,5] or its combination with viral Gag (matrix-p24-nucleoprotein)
and protease (Pro) proteins [6]. The overarching goal of these trials was
to induce HIV-1 neutralizing antibodies (NAbs) in the vaccinated
subjects and to evaluate their efficacy [4-6]. Additionally, the last trial
RV144 focused on inducing both humoral and cellular immunity
against HIV-1, especially by generating broadly NAbs (bNAbs) using a

prime-boost system with vectored gag-pro-env prime and boosting
with Env proteins from two subtypes or clades [6]. Unfortunately, these
trials were unsuccessful in inducing bNAbs against global HIV
subtypes; however, the last trial conferred a modest prophylactic
protection [4-6]. Nevertheless, these trials demonstrated the
production of HIV-1 type (tier 1)-specific NAbs and substantial levels
of Env-binding antibodies (Table 1).

Vaccine Trial Vaccine
Immunogen

Efficacy [No. infected] Vaccine-induced Immune Responses

B-cell Based Vaccine

Phase-III VAX003
(Thailand)

AIDSVAX
gp120 B/E
Subtype-B MN
& CRF01_AE

No efficacy [4]
[83/1017 vaccine vs. 81/1013 placebo]

• Binding nNAbs and tier-1 NAbs to gp120 (sporadic weak bNAb) [4,149]
• IgG4 bias is associated with reduced Ab-mediated Fc-effector function
[150]

Phase-III VAX004
(North America &
Netherland)

AIDSVAX
gp120 B/B
Subtype-B MN
& GNE8

No efficacy [5]
[241/3598 vaccine vs. 127/1805 placebo]

• Binding nNAbs and NAbs to gp120 (no bNAb) [151]
• ADCC Abs are associated with lower infection risk [152]
• CD8+ T-cell proliferation significantly higher in HIV infected group than
uninfected group [153]

B-cell and T-cell Based Vaccine

Phase-III RV144
(Thailand)

Priming
vaccine:
ALVAC-gag-
pro-env
Subtype-B LAI
gag & pro
CRF01_AE
gp120
Subtype-B LAI
gp41*
(*no
ectodomain)
Boosting
vaccine:
AIDSVAX
gp120 B/E

Positive efficacy [6]
All risk groups 31.2%
[51/7960 vaccine vs. 74/7988 placebo]
High risk group 3.7%
[22/1896 vaccine vs. 23/1929 placebo]

• IgG to V1V2 has significant inverse correlation with infection [7]
• Env-specific IgA Abs have significant direct correlation with infection [7]
• ADCC and Env-specific CD4+ T cells correlate inversely with infection [7]
• Tier-1 NAbs lower in peak tier than those in Vax003 and no bNAbs [147]
• IgG3 to V1V2 correlate with reduced infection risk [8]
• IgG to V2 & V3 linear epitopes correlate with reduced infection risk [9]
• IgA Abs to C1 block binding and ADCC effector function of IgG [10]
• ADCVI-like activity correlate directly with IgG1 & IgG2 to gp120 [150]
• Presence of Env V2-specific polyfunctional CD4+ T-cell responses of
IFNγ and IL2 followed by TNFα and then IL21 [101]
• Presence of Env V2-specific CD4+ CTLs [101]
• No HIV-specific CD8+ T-cell (ICS) responses to Gag or Env [6]

T-cell Based Vaccine

Phase-IIb HVTN 502
or Step
(North & South
America, Caribbean,
Australia)

Ad5-gag/pol/nef
Subtype B

Negative efficacy [12]
[Enhanced infection:
24/741 vaccine vs. 21/762 placebo]

• Nonspecific IFNγ secretion, but not HIV-specific IFNγ, is associated with
increased HIV infection risk [21]
• 43% vaccinees with HIV-specific CD8+ T-cell responses [23]
• Low in breadth compared to SIV vaccine studies
• Low in magnitude compared to LTNP with same assay
• More HIV-specific IFNγ alone or IFNγ/TNFα than IL2
• Small percentage of vaccinees express IL2
• 41% vaccinees with HIV-specific CD4+ T-cell responses [23]
• 31% vaccinees with HIV-specific CD4+ and CD8+ T-cell responses after
all vaccinations [23]
• Pre-existing anti-Ad5 Abs reduce HIV-specific productions of IFNγ, IL2, or
both more profoundly in CD8+ T cells than in the CD4+ T cells [23]

Phase-IIb HVTN 503
or Phambili
(South Africa, >98%
Black population)

Ad5-gag/pol/nef
Subtype B

Negative efficacy [14]
[9 mos: 34/400 vaccine vs. 28/400 placebo
[13]; enhanced in 42 mos: 63/400 vaccine vs.
37/400 placebo [14]]

• More vaccinees with IFNγ-secreting T-cell responses to Gag & Nef from
subtype B than from subtype C with the exception of Pol [13]
• Higher IFNγ titers to subtype-B Pol and Nef than to those of subtype C;
similar IFNγ titers in response to subtype-B and -C Gags [13]
• 53% vaccinees with IFNγ responses to all 3 subtype-B antigens but 15%
vaccinees with responses to all 3 subtype-C antigens [13]

Table 1: Selected prophylactic HIV vaccine trials with major contributions toward identifying vaccine epitopes and/or immunity.

The RV144 trial was minimally successful by conferring 31.2%
protection in the combined low/medium/high-risk group but
conferring only 3.7% protection in the high-risk group [6]. Since the
type-specific NAbs did not correlate with the modest protection
observed in the combined group, other immune correlates of

protection were evaluated, such as non-neutralizing anti-HIV
antibodies (nNAbs) and T-cell immunity [7]. Notably, the presence of
Env-specific IgG nNAbs inversely correlated with HIV infection with a
positive correlation with the protection [7-9]. However, Env-specific
nNAbs with antibody-dependent cellular cytotoxicity (ADCC) activity
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and Env-specific CD4+ T cells directly correlated with the protection
from active infection [7]. Conversely, Env-specific IgA antibodies
positively correlated with HIV infection (i.e., inverse correlation with
protection) [7]. A recent report showed IgA antibodies produced in
RV144 trials inhibited the protective ADCC activity [10]. This

observation raised concern since mucosal IgA immunity is considered
more or equally important as IgG immunity against mucosal
transmission of HIV infection, which is the major transmission route
for HIV [11].

Env Target Specificity bNAb ID Discontinuous or Linear Epitope Ab Isotype ADCC Activity a ADCC Reference a

CD4bs VRCO1 Discontinuous IgG1 ADCC [154,155]

 3BNC117 Discontinuous IgG1κ ADCC [154,156,157]

 CH103 Discontinuous IgG1 na na

 b12 Discontinuous IgG1 ADCC [158,159]

V2 Proteoglycan PG9 Discontinuous IgG1 ADCC [154,156,157]

 CHO1 Discontinuous IgG1 na na

 PGT145 Discontinuous IgG ADCC [156]

 VRC2609 Discontinuous IgG na na

V3 Proteoglycan PGT121 Discontinuous IgG1 ADCC [154,156]

 PGT128 Discontinuous IgG1 na na

 PGT135 Discontinuous IgG na na

MPER 10E8 Linear IgG3 ADCC [154]

 4E10 Linear IgG3κ ADCC [156,159]

 2F5 Linear IgG3 ADCC [156,159,160]

gp120-gp41 PGT151 Discontinuous IgG Negative [161]

 VRC34.01 Discontinuous IgG na na

 35022 Discontinuous IgG ADCC [157]

 8ANC195 Discontinuous IgG Negative [161]

aNot available (na)

 

Table 2: B-cell epitope specificity of bNAbs.

Prior to the completion of RV144 trial, two phase-IIb clinical
vaccine trials (Step and Phambili trials) consisting of adenovirus
type-5 (Ad5) vectored HIV gag/pol/nef vaccine were in progress and
tested whether vaccines based solely on anti-HIV T-cell immunity
could confer protection in vaccinated subjects (Table 1) [12-14]. Ad5-
gag/pol/nef vaccination did not induce NAbs, bNAbs, or ADCC
nNAbs to Env due to the absence of HIV env gene in the construct.
Unfortunately, upon one-year evaluation, the vaccine group showed
enhanced HIV infection compared to the placebo group in the Step
trial, resulting in an abrupt termination of both Step and Phambili
trials. Some reasons for the failure of the Step trial were attributed to:
1) the pre-existing anti-adenovirus antibodies in the enrolled subjects
[12,15], 2) the induction of Ad5-specific CD4+ T cells with increased
susceptibility to HIV and/or increased HIV trafficking to mucosal sites
[12,15-18], 3) more uncircumcised subjects in the vaccinated group
than in the placebo group [12,15], despite previous studies showed
circumcision directly correlating with decreased HIV transmission
[19,20], 4) the enhancement of HIV infection caused by the non-
specific release of IFNγ [21], and 5) the poor induction of anti-HIV T-
cell immunity [22,23]. In fact, the anti-HIV CD8+ T-cell responses

were of low magnitude and narrow breadth, less polyfunctional, and
targeted predominantly Pol and Nef proteins instead of Gag protein.
CD8+ cytotoxic T lymphocyte (CTL) and other T-cell responses
against HIV Gag are associated with control of HIV infection
compared to the T cell responses directed against Pol [24-29]. Hence,
insufficient magnitude and quality of anti-HIV T-cell immunity were
induced to counteract the HIV enhancing effects caused by adenovirus
vector and experimental design of the Step trial that might have caused
the failure of the trial. The initial nine-month results of the Phambili
trial did not show any statistical change in the rate of infection;
however, it was difficult to draw any conclusion due to early
termination and low participation compared to the Step trial [13]. The
findings from this trial indicated that neither pre-existing Ad5 titers
nor circumcision status affected the vaccine efficacy, which was later
confirmed in the median 42-months follow-up analysis [14]. Moreover,
the follow-up analysis revealed more infection in the vaccine group
than placebo group leading to the conclusion that vaccination
significantly increased the risk of HIV infection.

Citation: Sahay B, Nguyen CQ, Yamamoto JK (2017) Conserved HIV Epitopes for an Effective HIV Vaccine. J Clin Cell Immunol 4: 518. doi:
10.4172/2155-9899.1000518

Page 3 of 14

J Clin Cell Immunol, an open access journal HIV-1 Vaccine Immunology ISSN:2155-9899



Since none of the vaccines in the Phase-III vaccine trials induced
potent bNAbs, scientific efforts were subsequently focused on
identifying the B-cell epitopes that induce potent bNAbs against global
HIV subtypes [30-32]. The findings from RV144 also sparked renewed
interests in identifying B-cell epitopes on HIV Env that induced anti-
HIV nNAbs (e.g., ADCC Abs) as well as on identifying protective
conserved HIV T-cell epitopes to be combined with protective B-cell
epitopes as immunogens for an effective HIV vaccine [33-35]. The
recent findings about bNAbs as discussed below further support the
need for combining B-cell epitopes for ADCC nNAbs and bNAbs/
NAbs with anti-HIV T-cell epitopes [22,34-36].

Conserved B-cell and T-cell epitopes on HIV
An epitope is defined as the site on a molecule or an antigen

recognized by either an antibody or B-cell receptor (BCR), or by T-cell
receptor (TCR) recognizing the antigenic peptide bound to the major
histocompatibility complex (MHC) [37-39]. Hence, a B-cell epitope
binds to the epitope-specific antibody as well as epitope-specific BCR
on B cells. The binding of the antigenic epitope to the BCR(s) triggers
the B-cell differentiation into epitope-specific antibody producing
clonal B cells. A B-cell epitope can be either continuous (linear) or
discontinuous (conformational) stretch of amino acids (aa) on the
antigen [40]. Continuous or linear epitope consists of a consecutive aa
sequence on the antigen. Whereas, a discontinuous or conformational
epitope is formed with the help of more than one continuous aa series
come in close vicinity due to protein folding and other proteinaceous
and non-proteinaceous interactions. B-cell epitopes on HIV can also
be found on lipid, glycan, and protein antigens or their combination
(e.g., lipoprotein, glycoprotein) on HIV [30,31,34,41].

In recent studies, a majority of bNAbs reacted to conformational
epitopes than to linear epitopes (Table 2) [30,31,34,42] making it
difficult to use them in vaccine development where isolated epitopes
are used in vaccines. HIV epitopes for bNAbs are described conserved
because of their cross-reactivity due to broader affinity to multiple HIV
subtypes [34,43]. However, not all bNAb contact site of the HIV
epitopes are highly conserved in their aa sequence but can include
highly variable segment(s), suggesting other than aa sequences
controlling their binding. The binding of bNAb without a common aa
sequence may be due to the common conformation of the epitopes
despite variation in aa sequences or protein modifications
(glycosylation, lipidation) that might be the cause of their binding that
cannot be replicated in a vaccine with ease.

In comparison, T-cell epitopes are short linear peptides processed
from a protein antigen, and presented on MHC molecules for their
recognition by TCR on T cell to induce its effector function(s). The
conserved T-cell epitopes on HIV are identical or similar
(homologous) in aa sequences and are conserved among the HIV
isolates from the same subtype (type-specific) or from multiple HIV
subtypes [44-46], and those evolutionarily preserved are conserved
among AIDS lentiviruses of humans, nonhuman primates (NHPs), and
cats (HIV, SIV, FIV) [47,48]. Generally, those conserved among
HIV/SIV/FIV are often conserved within and among HIV subtypes
[47,48]. The evolutionarily conserved epitopes that maintained their
existence among different hosts have lower likelihood to acquire
mutation(s) compared to the non-conserved epitopes with variable aa
sequences. It is generally perceived that the highly conserved epitopes
are present on protein regions essential for viral survival, and any
substantial mutation(s) would affect the fitness of the virus [49-51].
Immunization with conserved HIV T-cell epitopes can have diverse

outcomes, ranging from infection-enhancing, neutral, beneficial, or
protective effect. Therefore, careful selection of conserved T-cell
epitopes that induce potent anti-HIV immunity is needed to develop a
highly effective HIV vaccine against global HIV subtypes.

B-cell epitopes generating broadly neutralizing antibodies
(bNAbs)
The bNAbs are those anti-HIV antibodies that potently neutralize a

broad spectrum of heterologous HIV viruses including those among
global HIV subtypes [34,43]. The existence of bNAbs has been first
detected in 20-50% HIV+ individuals with chronically infected for
over 2-5 years [34,52,53]. According to the studies with bNAbs isolated
from infected subjects, bNAbs target five epitopic regions of HIV Env
[30,31,34] and these include (Table 2): 1) CD4-binding site (CD4bs), 2)
V2 proteoglycan moiety on the trimer apex of surface Envs (SUs), 3)
V3 proteoglycan moiety on the high mannose patch of SU, 4)
membrane proximal external region (MPER) of Env transmembrane
domain, and 5) gp120-gp41 interface with or without fusion protein.
HIV antigenic epitope(s) that induce bNAbs with above characteristics
should be considered an ideal vaccine antigen(s) for prophylaxis. The
gp120-gp41 interface epitopes are often transitional epitopes requiring
initial contact to CD4 and/or CCR5 (co-receptor) molecules or
requiring viral fusion process before they are sufficiently exposed to
the bNAbs [54]. Since the majority of the known human bNAbs have
been IgG isotypes (Table 2), such vaccine epitopes should at least
induce IgG bNAbs. The results from RV144 suggest that elevated levels
of IgG1 and IgG3 subclasses correlated with vaccine protection,
whereas high levels of IgA and IgG4 correlated with enhanced HIV
viral titer [9,10,55]. As of to date, the HIV vaccine epitopes for bNAb
have not been identified or developed [31,34,56,57]. Vaccines
consisting of recombinant Env and trimeric Env proteins have not
successfully induced bNAbs [4,5,58,59]. However, information about
the characteristics of the bNAbs has been described as the first step
towards developing their counterpart Env epitopic antigen or
immunogen for vaccine [30,31,34].

The antigen binding site on an antibody that recognizes an antigenic
epitope is called paratope of the antibody [37]. Antibodies stimulated
by an antigen upon immunization or infection possess different
paratopes that bind to different epitopes on an antigen. The paratope
of an antibody is found on complementarity determining regions 1, 2,
and 3 (CDR1, CDR2, CDR3) of the antibody heavy and light chains.
The characteristics of the bNAb paratopes derived from chronically
HIV-infected subjects have recently been described [30,31,34,60]. The
bNAbs with 50% breadth develop in 20-50% of chronically HIV-
infected subjects [52]. The bNAb paratopes have unique characteristics
[30,31,34,61,62] such as: 1) high levels of somatic hypermutations at
theV(D)J antibody genes, 2) often possessing long heavy-chain CDR3
(HCDR3), 3) often showing polyreactivity and autoreactivity with self-
protein, glycan, and lipid, and 4) taking years to develop the broad
specificity of bNAb paratopes.

Although few occluded bNAb-inducing Env epitopes (e.g., CD4bs)
may remain relatively constant in aa sequence, mutation(s) at other
viral Env site (e.g., glycan insertion or deletion) of the viral escape
variant(s) may expose the occluded bNAb epitopes [63,64]. For
example, bNAbs developed to V2 proteoglycan moiety may lead to
viral escape variant(s) with N167D which in turn exposes the occluded
CD4bs resulting in the development of bNAbs to CD4bs. Such event
can explain why a sizable number of chronically infected individuals
possess multiple bNAbs with specificity to different targeted bNAb
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epitope region [64-67]. Another possibility is that the ancestral Env
epitope of potential bNAb itself may need to undergo changes such as
mutations with subtle conformational changes as part of viral escape
from NAbs or viral co-evolution [63,64,68]. The latter scenario of co-
evolution of both virus and B cells takes many years to develop bNAbs.
In either scenario, affinity maturation of the bNAb B-cell lineages in
response to viral escape variants may induce multiple cycles of somatic
hypermutation in the antibody genes [63,69,70].

Many bNAbs were determined to be polyreactive and autoreactive
to self-antigen(s) [61]. These observations raised a concern that
immunization with vaccine antigen(s) consisting of bNAb epitopes
may induce autoreactive antibodies, which may cause autoimmune
disease in the vaccinated hosts. However, initial passive transfer of
autoreactive bNAbs in nonhuman primates (NHPs) was well tolerated,
and no sign of autoimmune symptoms was observed in the passively
immunized monkeys [71]. Furthermore, the difficulty in developing
bNAbs in chronically infected individuals has been attributed to the
development of tolerance to the bNAb epitopes that are recognized as
self-epitopes by the host immune system [61]. This view is based on a
well-established immunological concept that autoreactive B cells often
undergo clonal deletion and/or anergy to prevent the production of
autoreactive antibodies in a healthy individual [61,72]. Besides these
undesirable features (i.e., autoimmune and tolerance) to overcome,
high levels of somatic hypermutation of antibody genes are required to
develop bNAbs with or without long HCDR3. Thus, these
combinations of events needed for developing bNAbs raised a major
concern on whether bNAbs can be developed by vaccination [33,73].

Non-neutralizing antibodies (nNAbs) during HIV
vaccination and infection

Some nNAbs and many of the bNAbs have been reported to mediate
ADCC and antibody-dependent cellular virus inhibition (ADCVI) of
the infected cells [55,74-76]. Antibodies that mediate ADCC and/or
ADCVI activity(s) use their Fab region to bind to the epitope on gp120
or gp41 present on the surface of infected cells or on the virus attached
to the infecting cells [55,74,76]. Meanwhile their Fc region binds to the
Fc receptors (FcRs) on the effector cell which subsequently triggers
cytotoxicity/cytolysis of the infected cells (ADCC) and/or non-
cytotoxic antiviral activity(s) in the infected cell (ADCVI). The ADCC
effector cells release cytolytic and cytotoxic molecules such as perforin
and granzymes, respectively, whereas those with ADCVI activity
produce chemokines (e.g., β chemokines) and/or cytokines that inhibit
viral replication in the cell. The selective mutation(s) of the Fc region
to remove FcR binding capability of the ADCC/ADCVI NAbs or
ADCC/ADCVI nNAbs will result in the loss of ADCC and/or ADCVI
activity(s). For example in an in vitro study, Fc mutated variants of
wildtype (wt) ADCC-mediating bNAb (b12) retained potent viral
neutralization activity similar to wt bNAb but lost ADCC activity [77].
However, a group of macaques passively immunized with wt bNAb b12
showed significant passive protection against SHIV challenge [78]. In
comparison, the group passively immunized with Fc-mutant variant of
wt b12 with diminished FcR binding potential had a significant loss in
passive protection. The authors concluded that both bNAb activity and
Fc-mediated activity(s) (ADCC, ADCVI) have synergist or additive
effect on the protection against SHIV challenge.

NK cells, macrophages, dendritic cells, and neutrophils are the
effector cells with FcRIIIa (CD16a) to mediate IgG-based ADCC
activity [55,76]. ADCC antibodies target either linear or
conformational epitopes on gp120 and gp41 [74]. In the RV144 trial,

the nNAbs to the epitopes on V1V2 and C1 protein regions possessed
ADCC activity which correlated with the modest protection observed
in the vaccinated/protected subjects [7-9]. More specifically, the anti-
V1V2 nNAbs with IgG3 subclass directly correlated with protection
[8]. Although gp120 and gp41 are the predominant targets for ADCC
antibodies [74], few studies have reported ADCC nNAbs to non-Env
epitopes such as those on HIV Pol [79], Nef [80], and Vpu [81]. Nef
[82-84] and part of Vpu [81,85] were reported to be present on the
surface of HIV-infected cells, but such studies have not been reported
for Pol [79]. Furthermore, serum from infected individuals showed a
strong ADCC activity against a highly conserved, surface accessible
linear Nef epitope (FLKEKGGLE) [80,84]. Overall, more studies will
be needed to determine the importance of ADCC nNAbs to these HIV
non-Env proteins.

Some nNAbs have been reported to enhance HIV infection by
complement-mediated enhancement [86,87] or by FcR-mediated
infection of dendritic cells and macrophages [33,88]. Whereas others
may increase transcytosis of HIV-antibody IgG complex using FcR and
DC-SIGN across the cell to present the HIV to the susceptible cells
such as CD4+ T cells [89,90]. The binding of HIV-antibody complex to
neonatal FcR (FcRn) on vaginal epithelial cells has been shown to
enhance the transcytosis of HIV at low pH at the endosomal
compartment [91], and these authors proposed that the FcRn detected
in the genital tract may enhance the sexual transmission of HIV. In the
RV144 trial, Env-specific blocking IgA nNAbs reduced the ADCC
activity of the Env-specific IgG nNAbs by competing for the same
epitope(s) [7,10]. Hence, an effective HIV vaccine should not induce
HIV Env-specific blocking antibodies that will decrease the anti-HIV
effects of ADCC and ADCVI antibodies or will decrease viral
neutralization activity of the type-specific NAbs and bNAbs against
HIV. The existence of enhancing and blocking Env-specific nNAbs
suggests that a careful selection of protective B-cell epitopes on HIV
Env may be needed for an effective HIV vaccine.

Conserved T-cell epitopes associated with anti-HIV
activity(s)

Conserved HIV T-cell epitopes for an effective HIV vaccine should
induce broad (multiple subtype specificities) and potent (high
magnitude) immunity against HIV. Conserved epitopes are often
subdominant epitopes since excessive immunity against them or
mutations will affect the fitness of the virus [92,93]. In addition, the
immune responses to the dominant non-protective epitopes could
potentially mask the immune responses to the protective conserved
epitopes in a vaccinated host. Therefore, a vaccine consisting of only
protective conserved epitopes may be ideal for an effective prophylaxis.
During early HIV infection, ART-naïve HIV+ subjects initially
produced CD8+ T-cell responses to predominantly variable epitopes
than to conserved epitopes [94]. Conserved epitopes were identified
more predominantly on Gag and Pol than on Env, Nef and accessory
proteins [94-97]. Those HIV+ individuals who controlled HIV
infection possessed CD8+ T-cell responses to conserved epitopes on
Gag but not to those present on Pol [94]. Moreover, CD8+ T-cell
responses to multiple conserved epitopes correlated with lower viral
load set point. However, only a trend in lower viral load set point was
observed in individuals possessing favorable HLA class-I alleles (e.g.,
HLA-B*27, HLA-B*57 [98]). Individuals who possess favorable HLA
alleles are reported to undergo slow HIV/AIDS disease progression
[98,99].
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The conserved T-cell epitopes must be able to induce potent CD8+
CTL [34,35], polyfunctional CD8+ and CD4+ T-cell [100,101], and
possibly CD4+ CTL [102] activities against HIV. These anti-HIV T-cell
activities are considered to be important for vaccine prophylaxis based
on the findings from HIV+ long-term non-progressor (LTNP) and
elite controllers [103,104], RV144 trial [101], and NHP studies
[105,106]. Less than 1% of the HIV+ subjects are elite controllers who
have <50 copies/mL of circulating HIV, normal CD4+ T-cell counts,
and are clinically asymptomatic [107,108]. Elite controllers maintain
potent CD8+ CTL and polyfunctional T-cell responses against HIV
[107,109] but no bNAbs and, if present, only a slight level of NAbs
which alone cannot explain the undetectable levels of circulating HIV
[110]. Polyfunctional T-cell responses include the production of
cytokines and chemokines that inhibit HIV infection [22,111]. In
particular, CD8+ CTLs in elite controllers produce higher levels of IL-2
and co-secretion of IL-2 and IFNγ but possess minimal breadth and
level of IFNγ alone [22,110]. LTNPs also generate CD8+ CTLs [25]
and non-lytic CD8+ T-cell antiviral factors (CAF) for the suppression
of HIV replication [112].

In the modestly successful RV144 trial, the polyfunctional T-cell
responses consisted of antigen-specific upregulation of IFNγ and IL-2
followed by TNF and IL-21 [101]. Some of these polyfunctional T cells
also expressed CD107a, a marker for degranulation typically on CTLs.
Furthermore, biological CTL analysis demonstrated the presence of
anti-Env(V2) CD4+ CTLs. Notably, no CD8+ CTL activity was
detected against HIV, whereas an earlier study using the same vaccine
regimen showed CD8+ CTL activity against Env and Gag/Pol in 24%
of the vaccines [113]. Recently, individuals with acute HIV infection
were reported to have HIV-specific CD4+ CTLs with perforin/IFNγ or
GrzA/IFNγ co-expression [102]. This study associates the early
presence of CD4+ CTLs with slow disease progression.

A recent study demonstrated the importance of a vaccine capable of
inducing CD8+ CTLs against a simian AIDS lentivirus, SIV. In this
study, all macaques immunized with cytomegalovirus (CMV)-vectored
SIV vaccine were positive for SIV infection shortly after the challenge
with homologous SIV [105,106]. However, 50% of the vaccinated/
infected macaques developed a transient infection which was
completely cleared by CD8+ CTLs against SIV. This study
demonstrates that at the early stage of infection, CD8+ CTLs can
destroy and eliminate virus-infected cells. Moreover, this study
establishes the importance of a vaccine inducing CD8+ CTLs for
prophylaxis and immunotherapy.

Conserved T-cell epitopes associated with protective HLA
allotypes prevalent in HIV endemic countries
The T-cell epitopes bound to HLA class I and II molecules are

recognized by the TCRs on CD8+ and CD4+ T cells, respectively to
exert their function(s). Certain HLA allotypes (i.e., proteins expressed
by HLA allele) confer resistance to HIV infection, while certain others
increase susceptibility to the HIV infection [114-117]. HIV-resistant
and -susceptible alleles may differ according to the race of the subjects
and the circulating HIV subtype(s) prevailing in the endemic country.
Alleles of HLA-A and HLA-B have been further classified into
supertypes based on the similarity in their structural motif and their
pocket chemical specificity to the peptides [118]. HLA alleles of
supertype A2 such as HLA-A2, HLA-A*0205, HLA-A*6802 are
associated with resistance to HIV subtype B in Caucasians from
Europe and North America [119] and to the HIV subtypes A, C, and D
in African population from Kenya and Tanzania of Sub-Sahara Africa

(Table 3) [114-116,120]. Conversely, HLA alleles of supertype B7 such
HLA-B*3501, HLA-B*3502 and HLA-B*5303 are associated with
increased susceptibility to subtype-B HIV in Europe and North
America [119], whereas supertype B7 alleles such as HLA-B*0702 and
HLA-B*4201 are associated with increased susceptibility to HIV
subtypes A, C, and D circulating in Kenya [117]. These alleles are not
the only ones associated with increased susceptibility in Sub-Sahara
Africa. HLA-A*2301 (supertype A24) in Kenya [114,117] and HLA-
C*0702 in Tanzania [116] are also associated with increased
susceptibility to HIV transmission.

Additionally, certain HLA allotypes correlate with slow disease
progression, while certain others correlate with a rapid progression of
the disease as determined by virus load, CD4+ T-cell count, and/or
disease status [98,99]. HLA alleles associated with slow disease
progression in Europe, North America, and Sub-Sahara Africa are
members of supertype A3 (HLA-A*74, HLA-A*7401), supertype B27
(HLA-B*14), and supertype B58 (HLA-B*57, HLA-B*5703) and few
other alleles (HLA-B*8101, C*1203, C*18, C*1801) (Table 4)
[116,117,121-127]. Interestingly, these alleles are not the same ones
associated with resistance to HIV. Similar to HLA alleles associated
with elevated susceptibility to HIV, alleles in HLA supertype B7 are
found in individuals with rapid HIV-disease progression, but the
specific alleles are not always the same between the HIV-susceptible
and the rapid HIV progression groups. In fact, the HLA alleles related
with rapid HIV progression commonly found in Europe, North
America, and Sub-Sahara Africa are HLA-B*07, B*0702, B*3501,
B*3502, B*3503, and B*5301 of HLA supertype B7, and HLA-B*08 and
HLAB-0801 of HLA supertype B8 [122,128-130] (Table 4). HLA-
B*8101 which belongs to supertype B7 presents an anomaly to the
trend of unfavorable alleles belonging to HLA supertype B7. HLA-
B*8101 is associated with resistance to HIV infection in African
Americans of North America [122] and Africans of Sub-Sahara Africa
(South Africa, Botswana, Zimbabwe, Zambia) [125,127].

The HIV transmission studies evaluating resistant versus susceptible
HLA alleles may help identify HIV epitopes and their corresponding
immunity required for prophylaxis. In contrast, studies evaluating the
control of the HIV infection in HIV+ subjects in terms of slow or rapid
HIV progression may identify HIV epitope recognition and immunity
more important for immunotherapy. In any event, the T-cell epitopes
on HIV identified by these approaches should be tested for their ability
to induce potent and broad anti-HIV T-cell activities.

Antibodies and T-cell responses enhancing HIV infection
Non-protective T-cell epitopes can induce either neutral or

enhancing effect on HIV infection. For instance, stimulation of CD4+
T cells can cause enhancement of HIV infection [131-133]. Autocrine
and paracrine cytokine signaling, especially from TNF and IFNγ could
increase in viral gene transcription simultaneously with the activation
of CD4+ T-cells via NF-κB pathway [134-137]. Activated CD4+ T cells
express high levels of HIV co-receptor CCR5 which in turn together
with the primary receptor CD4 molecule will make the cell more
susceptible to HIV infection [137]. The stimulation of CD4+
regulatory T cells (Treg) can have opposing effects on HIV infection.
Treg cells can suppress anti-HIV CD8+ CTL activity which in turn will
increase HIV infection [138], whereas Treg cells can suppress the
production of inflammatory cytokines such as TNF and IFNγ which
could decrease HIV viral replication by decreasing CD4+ T-cell
activation [139,140]. In Step and Phambili trials, T cell-based (non-
Env) vaccine caused enhancement of HIV infection (Tables 1 and 5)
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[12-14,21]. Furthermore, vaccine-induced enhancement upon SIV
challenge was observed in NHPs vaccinated with SIV Env protein
[141]. However, such enhancement was reported to be caused by
CD4+ T-cell responses. In another animal AIDS model, FIV Env
vaccination of cats enhanced challenge infection with FIV [142,143].
In the RV144 trial, Env-specific IgA antibodies decreased the ADCC

activity of Env-specific IgG [5,8]. Therefore, an ideal vaccine should
limit unwanted CD4+ T cell activation and non-specific cytokine
production to minimize viral replication, whereas it should activate
potent anti-HIV effector activities such those of anti-HIV CTL, anti-
HIV polyfunctional T-cells, and bNAb/NAb/ADCC antibodies [132].

 HLA Class I
HLA
Supertypea

HIV
Subtypeb

Cohort
Size Cohort & Study Description c  Reference

Europe & North America: HIV-Resistant HLA

A*02/A*0205/A*6802 A2 B 284
Caucasian homosexual
transmission [119]

Sub-Sahara Africa: HIV-Resistant HLA 

A*02/A*6802 A2 A,D,C 433
Kenya; M-C & perinatal
transmission [120]

  A,D,C 232
Kenya; CSW heterosexual
transmission [114]

  A,D,C 171
Kenya; M-C & perinatal
transmission [115]

A*0205 A2 A,C,D 272 Tanzania; seroconversion survey [116]

Europe & North America: HIV-Susceptible HLA

B*3501/B*3502/B*3503 B7 B 284
Caucasian homosexual
transmission [119]

Sub-Sahara Africa: HIV-Susceptible HLA

A*2301 A24 A,D,C 232
Kenya; CSW heterosexual
transmission [114]

  A,D,C 338
Kenya; CSW heterosexual
transmission [117]

B*0702 B7 A,D,C 338
Kenya; CSW heterosexual
transmission [117]

B*4201 B7 A,D,C 338
Kenya; CSW heterosexual
transmission [117]

C*0702 C*07 A,C,D 272 Tanzania; seroconversion survey [116]

aTwo-digit resolution nomenclature for HLA-C.
bHIV-1 subtypes shown in order of prevalence and based on following references [162-166].
cBlack populations from Sub-Sahara; mother-to-child (M-C) transmission; female commercial sex worker (CSW)

Table 3: HLA class-I alleles associaed with resistance or susceptible to HIV infection.

HLA Class I HLA
Supertypea

HIV
Subtypeb

Cohort Size Cohort Description Reference

Europe & North America: HLA for HIV Slow Progression

A*74/A*7401 A3 B 338 African American [123]

B*14 B27 B 2,945 Caucasian & African American [122]

  B 338 African American [123]

B*57 B58 B 338 African American [123]

  B 241 Caucasian [121]

  B 2,945 Caucasian, African American [122]
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B*5703 B58 B 3,622 African American, Hispanic c [122]

  B 338 African American [123]

B*8101 B7 B 2,945 African American c [122]

C*1203 C*12 B 2,945 Caucasian, African American [122]

C*18/C*1801 C*18 B 2,945 African American c [122]

  B 338 African American [123]

Sub-Sahara Africa: HLA for HIV Slow Progression 

A*74/A*7401 A3 C 784 Zambia [125]

  A,C,D 508 Tanzania [116]

  A,D,C 663 Kenya [117]

B*14 B27 A,D,C 663 Kenya [117]

B*57 B58 C 259 Zambia [124]

B*5703 B58 C 1,211 South Africa [126]

  C 784 Zambia [125]

  C 2,126 South Africa, Botswana, Zimbabwe [127]

  A,D,C 663 Kenya [117]

  A,C,D 329 Tanzania (only females) [116]

B*8101 B7 C 563 Zambia [125]

  C 2,126 South Africa, Botswana, Zimbabwe [127]

C*1203 C*12 C 2,216 South Africa, Botswana, Zimbabwe [127]

C*18 C*18 C 784 Zambia [125]

C*1801 C*18 A,C,D 329 Tanzania (only females) [116]

Europe & North America: HLA for HIV Rapid Progression

B*07/B*0702 B7 B 2,945 Caucasian d [122]

B*3501 B7 B 2,945 Caucasian, African American [122]

  B 1,089 Caucasian, African American, Hispanic [130]

B*3502/B*3503 B7 B 850 Caucasian, African American [129]

  B 1,089 Caucasian, African American [130]

B*5301 B7 B 850 Caucasian, African American [129]

  B 2,945 Caucasian [122]

  B 1,089 Caucasian, African American, Hispanic [130]

B*08/B*0801 B8 B 32 Caucasian [128]

  B 2,945 Caucasian d [122]

Sub-Sahara Africa: HLA for HIV Rapid Progression

B*07/B*0702 B7 A,D,C 663 Kenya [117]

B*3501 B7 C 2,126 South Africa, Botswana, Zimbabwe [127]

B*3502/B*3503 B7 A,D,C 663 Kenya [117]
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B*5301 B7 A,D,C 663 Kenya [117]

B*08/B*0801 B8 C 2,126 South Africa, Botswana, Zimbabwe [127]

aTwo-digit resolution nomenclature for HLA-C.
bHIV-1 subtypes shown in order of prevalence and based on following references [163-165].
cNot in Caucasian population.
dNot in African American population. 

Table 4: HLA class-I alleles associated with HIV disease progression.

A. B-cell epitopes for prophylactic vaccine:

·      Generate potent bNAbs

·      Generate bNAbs of known Env targets (e.g., linear epitope for 10E8) until more potent minimally constructed bNAb epitopes become available

·      Generate potent type-specific NAbs to the subtype(s) prevalent in the country

·      Generate broad and potent ADCC/ADCVI epitopes

·      Must exclude HIV epitopes that induce neutralization-blocking Abs and HIV infection-enhancing Abs

B. T-cell epitopes for prophylactic vaccine:

·      Should be highly conserved to prevent the development of escape mutants

·      Generate broad and potent anti-HIV CD8+ CTLs secreting perforin and/or granzymes

·      Generate broad and potent polyfunctional T-cell responses especially those that induce IL2/proliferation and anti-HIV β-chemokines

·      Possibly induce CD4+ CTLs without activation of HIV-susceptible CD4+ T cells

·      Should recognize HLA allotypes prevalent in the countries

·      Must exclude HIV-infection enhancing epitopes

Table 5: Features of B- and T-cell epitopes for an efficacious HIV vaccine.

Conclusion

Conserved T-cell and B-cell epitopes with potent anti-HIV
activity for HIV vaccine

As discussed above, significant progress has been made to identify
the protective B-cell and T-cell epitopes for a highly effective HIV
vaccine. Such HIV vaccine should consist predominantly of anti-HIV
conserved T-cell epitopes (Table 5B) and selected B-cell epitopes that
induce bNAbs, NAbs, and ADCC/ADCVI antibodies (Table 5A) with
exclusion of HIV-enhancing epitopes. To this end, studies are in
progress using HIV mosaic vaccines consisting of anti-HIV conserved
T-cell epitopes and epitope regions rather than whole HIV proteins
which may contain enhancing epitopes [45,46,144-147]. The
development of conformational B-cell epitopes that induce bNAbs
appears to be a major task since Env vaccine epitopes for bNAbs are
still unavailable [31,34,56,57]. Concerted efforts have been made in
developing Env trimers. However, current whole-Env trimer constructs
still contain HIV-enhancing epitopes such as epitopes for blocking
antibodies and T-cell epitopes that stimulate immunodominant
responses without anti-HIV activity(s) while masking the
subdominant protective responses. Consequently, if the trimer
immunogen does not induce potent bNAbs as well as potent NAbs to
multiple subtypes then HIV-enhancing epitopes and non-protective
HIV immunodominant epitopes can counteract the potency of these
antibodies, and the vaccine efficacy may not be detected such as those

observed in VAX003 and VAX004 trials. Hence, the selection of
minimally-constructed protective epitopes (without enhancing
epitopes) is required.

Until minimally constructed, highly potent bNAb conformational
epitopes become available, the use of bNAb linear epitopes (e.g.,
MPER) and most potent NAb linear epitopes from multiple subtypes
(A,B,C) should be combined as mosaic vaccine and tested in SHIV/
macaque model. Finally, besides bNAbs and type-specific NAbs, every
effort should be made to include other conserved B-cell epitopes such
as those that induce potent and broad ADCC/ADCVI antibodies as
well as conserved T-cell epitopes that induce potent and broad anti-
HIV polyfunctional T-cell responses and anti-HIV CD8+ and CD4+
CTLs. T cell-based conserved-mosaic vaccines were shown to enhance
the breadth and potency of epitope recognition [147]. In another study,
short conserved HIV epitopes devoid of immunodominant epitopes
were shown to increase immunogenicity and to shift the
immunodominance [148]. The RV144 trial is considered to be the first
effort to combine B-cell and anti-HIV cellular immune effector
activities (i.e., T cells and NK cells). More importantly, this trial is the
only phase-III trial that demonstrated prophylactic efficacy although of
modest level. In fact, the findings from this trial further support the
contention that more anti-HIV immune effector activities are required
to confer complete or sterilizing protection. In conclusion, an
efficacious HIV vaccine may need to stimulate multitude of potent and
broad immune effector activities against HIV in order to confer
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sterilizing protection against one of this century’s most challenging
viral pathogen, HIV.
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