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Editorial
The role of enteroviruses (EV) in human infectious pathology 

has been increased and substantially clarified in recent decades [1-3]. 
This is in part due to the large number of investigations carried out 
on a series of EV-induced infections manifested for the first time by 
epidemic spread in several regions of the globe, for example the EV71 
epidemic in Southeast Asia [4,5] and EV68 in the USA [6]. Out of the 
116 “classical” human EV serotypes of species A–D, there are 65 EVs 
that can cause disease in humans: 23 Coxsackie A viruses, 6 Coxsackie 
B viruses, 28 echoviruses, 5 other non-polio enteroviruses, and 3 
polioviruses [7]. Also belonging to the Enterovirus genus are about 150 
human rhinovirus serotypes of A, B, and C species [8]. 

There is no analogy in the biological world to the proven EV 
replication mutation rate of 10-3 [9,10] nor to the connected, unusual 
phenomenon of one virus, in one region, during one period of time 
(the summer season), causing more than ten different clinical pictures 
affecting different human tissues and organs (e.g., brain, meninges, 
uvea, conjunctiva, smooth muscles, myocardium, pericardium, 
endocardium, and pancreatic beta cells). Besides, an unusual obstacle 
to introducing traditional epidemiologic measures was manifested — 
more than 80% of infected individuals were asymptomatic (lack of a 
clinical picture) [1,11,12]. This unusual clinical phenomenon, for 
epidemiology, was explained by the existence of EV progeny consisting 
of billions of quasispecies [13,14]. Such quasispecies are at the basis of 
the rapid development of drug resistance to each established enterovirus 
replication inhibitor. Herrmann and Herrmann [15] postulated that the 
development of resistance is an obligatory indicator for considering a 
substance that inhibits viral replication to be a specific virus inhibitor. 
For the development of drug resistance substantially contributed 
the monotherapeutic treatment as the only approach applied in the 
anti-enterovirus studies: among the several hundred substances with 
different modes of action that are active in vitro, fewer than 20 have 
demonstrated some effect in vivo, and none have passed clinical trials. 

The double-blind placebo-controlled clinical trials of enterovirus 
replication inhibitors selected through preclinical studies have so 
far failed. This is undoubtedly due mainly to the lack of selectivity, 
substantiated by well-expressed side effects in the human body. There 
are several examples of such trials: disoxaril (WIN51711) and WIN 
54954 [16]; pleconaril (WIN63843) [17,18]; and BTA-798 (an oxime 
ether analogue of pirodavir) [19]. These trial results show that, at 
present, clinically effective antivirals for treating enteroviral infections 
do not exist. Thus, the realization of anti-enteroviral chemotherapy is a 
problem for the future. 

There are convincing indications for chemotherapy application in 
enterovirus infections: (i) the severity of a series of EV-caused illnesses, 
(ii) the large number of EV species and serotypes, (iii) the social
importance of certain EV infections, which is connected with their
widespread occurrence, and (iv) the absence of vaccinal prophylaxis,
excluding the anti-poliomyelitis vaccines. Recently, progress has been
made in the development of a vaccine against enterovirus 71 [20].
Evidently, the problem of counteracting drug resistance in EV infections 

remains unsettled; it has been found to be much more complicated than 
counteracting drug resistance in AIDS, influenza, and hepatitis C. 

Another special indication is the development of efficacious 
anti-polio drugs. The Third Meeting of the Advisory Committee 
on Poliomyelitis Eradication, held in October 2006, proposed the 
establishment of a “poliovirus antiviral initiative” and the appropriate 
and possibly essential development of at least two anti-polio drugs for 
controlling polio in the post-eradication era [21]. These will be of great 
benefit for post-exposure prophylaxis and outbreak control [22,23]. 

Combination chemotherapy could be considered as a perspective 
approach for preventing the development of anti-EV drug resistance. 
The carried out, by our team mainly, systemic investigation of multiple 
anti-EV inhibitory substances used in double combinations against a 
broad spectrum of enteroviruses identified a considerable number 
of such combinations that had synergistic combined effects. Some 
combinations proved to have an additive effect, and only a small 
number of combinations manifested an antagonism, in particular those 
that included ribavirin [24-26]. Ribavirin’s mutation-rate-enhancing 
action toward EVs was determinant in these cases [27]. A double drug 
resistance was proven initially in the course of investigation on the 
synergistic combination disoxaril + enviroxime against poliovirus 1 
[25]. The validity of this phenomenon needs additional studies to be 
confirmed.

Our experiments both in vitro and in vivo were carried out on 
Coxsackie B viruses. Why have we targeted representatives of Coxsackie 
B viruses in our anti-enteroviral investigations? The Coxsackie B 
viruses cause many diseases [10]: meningitis and soft paralyses (B1–
6); pleurodynia (epidemic myalgia, Bornholm disease; B1–6); acute 
respiratory diseases (B2–5); eye diseases (uveitides; B2); heart diseases 
(acute myocardiopathy and acute pericardiopathy; В1–6); chronic 
diseases of the heart and vessels (dilative cardiomyopathy; В3–5), 
insulin-dependent diabetes mellitus (IDDM; В2–4 predominantly); 
diseases of newborns (В2–5); gastrointestinal diseases (hepatitis in 
newborns, pancreatitis; Coxsackie В); FMD-like disease (В2, В5); and 
chronic asthenia syndrome (Coxsackie В).

In experiments in newborn mice infected with a neurotropic 
strain of Coxsackievirus B1 (CVB1), Connecticut 5, treated with the 
VP1 ligand disoxaril (a WIN compound), drug resistance developed 
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4–6 days after virus inoculation [28]. The disoxaril-resistant mutant 
was characterized by a panel of phenotypic markers: (i) sharply 
increased 50% inhibitory concentration (IC50) – from 0.84 µM to >30 
µM, (ii) change in the plaque shape – from round to irregular, (iii) 
increase of the plaque size – from 0.9 mm to 1.9 mm, (iv) increased 
thermosensitivity at 50°C (ET50) – from 31 min to 7 min, and (v) 
slightly increased pathogenicity for mice. The molecular genetic basis 
of the drug resistance consisted of specific replacements in amino acid 
consequences coded in the VP1 locus. 

We decided to exam the in vivo combination effects of EV replication 
inhibitors with different mechanisms of action. Preliminary, the activity 
of double, triple, and quadruple combinations was investigated, either 
administered consecutively and alternatingly (i.e., not simultaneously) 
(CAA) or applied simultaneously and daily, in newborn mice infected 
with CVB1 20 MLD50. For the CAA course, we also tested the influence 
of the substance application order. Monotherapeutic courses of 
the compounds comprised in the triple combinations were used as 
controls, in addition to placebo groups. The best antiviral effect was 
produced by the triple combination via CAA with compounds applied 
in a specific sequence-an inhibitor targeting the capsid protein VP1 had 
to be administered first [29].

Initially, the effect of the CAA course with the triple combination 
disoxaril + guanidine-HCl + oxoglaucine (DGO) was tested on mice 
inoculated with CVB1. This combination (DGO via CAA) reached a 
protection effect of approximately 50%. It had the same efficacy against 
infections with neurotropic (Nancy) and cardiotropic (Woodruff) 
strains of CVB3 [30]. 

Subsequently, we replaced disoxaril with pleconaril (i.e. the 
combination became PGO), a VP1 blocker possessing its own in 
vivo activity, though it also has some toxicity. The PGO combination 
with CAA also manifested a marked protective effect (31.3% - 68%, 
depending on the pleconaril dose) against experimental neuroinfection 
with CVB1 20 MLD50 [31].

The WIN compounds in the DGO and PGO combinations target 
the VP1 protein in the enteroviral capsid, removing the pocket factor (a 
lipid moiety molecule) in the VP1 hydrophobic pocket [32]. The second 
component using the VP1 ligand disoxaril (a WIN compound) in the 
combinations, guanidine-HCl, is a ligand of the 2C protein, which 
suppresses daughter RNA (+) chain initiation during virus replication 
[33]. Finally, the third component is oxoglaucine, an aporphinoid 
alkaloid isolated from the epigeous parts of the yellow horn poppy 
(Glaucium flavum Cranz) [34,35]. Oxoglaucine’s mechanism of action 
[36], has an enviroxime-like effect, (i.e. it acts as an inhibitor of PI4KB 
and therefor inhibits the formation of the replicative complex of 
enteroviruses). The in vivo antiviral effect of oxoglaucine, in analogy 
to enviroxime, is distinguished by modest values (S. Spasov and A. 
S. Galabov, unpublished data); however, the second component-
guanidine-HCl-does not generally have an individual in vivo effect [37]. 
This fact compelled us to replace guanidine-HCl with another inhibitor 
of viral RNA synthesis, the compound 2-(3,4-dichlorophenoxy)-5-
nitrobenzonitrile (MDL-860) [38]. This Merrill-Dow Pharmaceuticals 
product (synthesized initially by L. Markley) is notable for its waste 
anti-enterovirus scope and for its in vivo effects on cardiotropic CVB3 
infection in adult mice [39]. The compound’s mechanism of anti-
enterovirus action has not been clarified, but it is thought to interfere 
at an early stage, post-uncoating, in enterovirus replication [40,41]; a 
function of the virus replicative complex, viral RNA polymerase, has 
been suggested [39]. 

As a next research step, as mentioned above, we replaced guanidine-
HCl with enteroviral RNA synthesis inhibitor MDL-860 to test the 
effect of a new triple combination-pleconaril + MDL-860 + oxoglaucine 
(PMO)-applied via CAA in newborn mice infected subcutaneously 
with 20 MLD50 of CVB1. 

The PMO combination via CAA showed high activity at the 75 
mg/kg MDL-860 dose: a protective effect of 50% and a pronounced 
suppression of brain virus titers (a decrease of 4-5 logs at day 7 post 
infection when compare CAA group’s brain samples with that of the 
25 mg/kg pleconaril monotherapy group). Moreover, along with 
the prevention of drug resistance, a phenomenon of increased drug 
sensitivity was established. MDL-860 sensitivity in PMO group on 
day 7 increased 8.2 times vs. placebo (29 times vs. monotherapy) 
and oxoglaucine sensitivity – 4.9 times vs. placebo (by 6.8 times vs. 
monotherapy) on Day 13. Daily, simultaneous administration of PMO 
showed no protective effect and a rapid development of drug resistance. 

These results add new support for using CAA treatment courses to 
achieve clinically effective chemotherapy of EV infections.
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