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Gap junctions are a group of specialized cell junctions that arise from 
the docking of 2 hemichannels of adjacent cells. These hemichannels 
are composed of 6 connexins (Cx), which constitute a family of 
approximately 21 transmembrane proteins that are expressed in a cell-
specific way [1-3]. In liver, C×32 is the dominant connexin species in 
parenchymal cells (i.e. hepatocytes), while the non-parenchymal liver 
cell population (e.g. stellate cells and Kupffer cells) mainly harbours 
C×43 [3-6]. 

Connexins and their channels contribute to cellular signaling in 
3 ways. First, gap junctions establish a circuit for direct intercellular 
communication by controlling the exchange of vital metabolites 
and secondary messengers between neighbouring cells. Secondly, 
hemichannels, besides serving as structural precursors of gap 
junctions, form a pathway for extracellular communication, as they 
allow the trafficking of a number of biochemical messengers between 
the cytoplasm of individual cells and their extracellular environment. 
Thirdly, connexin proteins participate in intracellular communication, 
by directly interacting with critical homeostasis regulators or by 
affecting their expression independently of their role as building blocks 
of hemichannels or gap junctions [2,7,8]. 

Cx32-based gap junction communication between hepatocytes 
supports the execution of a number of typical liver functions, including 
drug metabolism, albumin secretion, ammonia detoxification, 
glycogenolysis and bile secretion [3-6]. Furthermore, connexin-based 
signaling, in all its facets, is involved in the control of liver cell growth 
[2,7] and liver cell death [2,8]. Inherent to this pivotal role in the 
maintenance of homeostasis, in casu in the liver, connexins and their 
channels are frequent targets of hepatotoxicity. Indeed, a plethora of 
chemicals negatively affect hepatocellular Cx32 protein levels and 
gap junctional communication, including environmental pollutants, 
biological toxins, organic solvents, pesticides, pharmaceuticals, 
peroxides, metals and phthalates. Since many of these compounds 
are tumor promoters or epigenetic carcinogens, inhibition of liver 
gap junctions has been proposed as a promising biomarker of non-
genotoxic hepatocarcinogenicity [3,5,9].

The involvement of hepatic connexin-related signaling in the 
response to chemical insults is bidirectional, as gap junctions not only 
are sensors, but also mediators of liver toxicity. However, their exact 
role in this process remains unclear. Thus, Cx32 knock-out mice are 
more susceptible to both spontaneous [10] and chemical-induced liver 
[10,11] tumors, which advocates a cytoprotective function for Cx32-
based cellular communication. In sharp contrast a number of reports 
demonstrating that animals which express a dominant negative mutant 
of Cx32 are resistant to liver injury evoked by carbon tetrachloride 
[12] or acetaminophen [13], thereby suggesting that Cx32-related
signaling aggravates hepatotoxicity. In line with this finding, a recent
study showed that pharmacological inhibition of hepatic Cx32-based
communication reduces serum alanine aminotransferase levels,
inflammation and histopathological evidence of hepatocyte cell death
in the liver of acetaminophen-overdosed animals [14]. Such reports
clearly underscore the high potential of exploiting connexin channels
as drug targets in the treatment of liver toxicity and pathology.
Nevertheless, future steps into this direction should be focused on the

development of drugs that are able to disentangle hemichannel signaling 
and gap junction communication. Indeed, although controversial, the 
current view is that hemichannels, unlike gap junctions, generally act 
as pathological pores [7,8], thus necessitating distinction between these 
2 types of connexin-based channels when intending novel therapeutic 
strategies.

Connexins are not only of great therapeutic value, but seem 
equally promising from a clinical diagnostic perspective. In this regard, 
administration of acetaminophen to rats results in de novo expression 
of Cx43 in hepatocytes, which is co-localised with caspase 3, a key 
regulator of apoptotic cell death [13]. Cx43 is not naturally occurring 
in hepatocytes and its production in these cells is also induced by 
many other hepatotoxicants as well as in several liver pathologies. 
The mechanism that drives this event, which usually parallels the loss 
of endogenous Cx32 expression, is unclear, though may rely on the 
transcriptional machinery [15]. Anyhow, Cx43 represents a novel and 
general “stress” liver biomarker, which will undoubtedly be cordially 
welcomed by clinical toxicologists.
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