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Introduction
The striking efficiency of enzyme catalysis has inspired many 

organic chemists to explore enzyme mechanisms by studying certain 
intra molecular processes such as enzyme models which proceed faster 
than their intermolecular counterparts. This research brings about the 
important question of whether enzyme models will replace natural 
enzymes in the conversion of prodrugs to their parental drugs.

Enzymes are mandatory for the inter conversion of many prodrugs 
to their parental drugs. Among the most important enzymes in the 
bioconversion of prodrugs are amides (ex. trypsin, chymotrypsin, 
elastase, carboxypeptidase, and aminopeptidase) and ester-based 
prodrugs (ex. paraoxonase, carboxylesterase, acetylcholinesterase 
and cholinesterase). Most of these enzymes are hydrolytic enzymes, 
however, non-hydrolytic enzymes, including all cytochrome P450 
enzymes, are also capable of catalyzing the bioconversion of ester and 
amide-based prodrugs [1].

Today, the consensus is that the catalytic activity of an enzyme is 
based on the combined effects of catalysis by functional groups and the 
ability to reroute intermolecular reactions through alternative pathways 
by which substrates bind to preorganized active sites. Rate acceleration 
by enzymes can be due to (a) covalently enforced proximity, as in 
chymotrypsin, [2] (b) non-covalently enforced proximity, as in the 
catalytic activity of metallo-enzymes, [3] (c) covalently enforced strain, 
and [4] (d) non-covalently enforced strain, which has been heavily 
studied in models that mimic the enzyme lysozyme [5].

The rate constants for a large majority of enzymatic reactions 
exceed 1010 to 1018 fold the non-enzymatic bimolecular counterparts. 
For example, reactions catalyzed by cyclophilin are enhanced by 105 
and those by orotidine monophosphatedecarboxylase are enhanced 
by 1017 [6]. The significant rate of acceleration achieved by enzymes 
is brought about by the binding of the substrate within the confines 
of the enzyme pocket called the active site. The binding energy of the 
resulting enzyme-substrate complex is the dominant driving force and 
the major contributor to catalysis. It is believed that in all enzymatic 
reactions, binding energy is used to overcome prominent physical and 
thermodynamic factors that create barriers for the reaction [7] (ΔG). 
The striking efficiency of enzyme catalysis has inspired many organic 
chemists to explore enzyme mechanism(s) by studying certain intra 
molecular processes (enzyme models) which proceed faster than 
their intermolecular counterparts. Both, enzymes and intra molecular 
processes are similar in that the reacting centers are held together 
(covalently with intra molecular systems, and non-covalently with 
enzymes) [8].

During the last six decades, reaction models for mimicking enzyme 
catalysis has been advocated by a variety of chemists. Among enzyme 
models based on enthalpic driving forces are: (1) near attack proximity 
orientation model proposed by Bruice’s group [9,10]; (2) orbital 
steering theory proposed by Koshland’s group [11]; (3) spatiotemporal 
hypothesis devised by Menger et al. [12,13-18]; and (4) stereo population 
control suggested by Cohen’s group [19-21]. Mechanistic studies 

based on these models have played an important role in elucidating 
the chemistry of the groups involved in enzyme catalysis as well as in 
unraveling the mechanisms available for particular processes. Based on 
these studies, it seems reasonable to assume that an understanding of 
efficiency depends on the structure in intramolecular catalysis, which 
draws the basis for utilizing these enzyme models as linkers to certain 
drugs for synthesizing prodrugs with higher bioavailability than their 
corresponding parental drugs. In addition, it was found that slight 
changes in the structural features of the enzyme model could provide 
a broad range of reaction rates ranging from 1 to 1015 [22]. With such a 
broad range, prodrugs will be designed so that they will undergo non-
enzymatic (chemical) conversion to their parental drugs in a fast or 
slow manner according to the required goal.

Prodrugs are bio reversible derivatives of drug molecules designed 
to overcome pharmaceutical, pharmacokinetic or pharmacodynamic 
barriers, such as low oral absorption, lack of site specificity, insufficient 
chemical stability, poor solubility, toxicity, and unacceptable taste/odor. 
The prodrug approach is becoming more popular and successful, as 
prodrugs comprise around 10% of the world’s marketed medications 
and 20% of all small molecular medications approved between 2000 
and 2008 [23,24].

An ideal drug candidate needs to have specific properties, including 
chemical and enzymatic stability, solubility, low clearance by the liver or 
kidney, permeation across biological membranes, potency, and safety. 

The conversion of a prodrug to the parental drug at the target site is 
crucial for the prodrug approach to be successful. Generally, activation 
involves metabolism by enzymes that are distributed throughout the 
body. Many prodrugs contain ester or amide bonds, which are formed 
by derivatizing a hydroxyl, carboxyl, or amine group present in the 
parental drug. When the ester or amide bond of the prodrug is cleaved, 
the active parental drug is released. In vivo cleavage of ester and amide 
bonds generally occurs through hydrolysis or oxidation. Many ester 
and amide-based prodrugs have been developed after being designed 
to improve the oral bioavailability of drugs [25-27]. The major problem 
with these prodrugs is the difficulty in predicting their bioconversion 
rates, and thus their pharmacological or toxicological effects. Moreover, 
the rate of hydrolysis is not always predictable, and bioconversion can 
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be affected by various factors such as age, health conditions and gender 
[28–30].

Modern computational methods can be used for the design of 
innovative prodrugs for drugs that contain hydroxyl, phenol, or amine 
groups. For example, mechanisms of some enzyme models that have 
been used to gain a better understanding of enzyme catalysis have 
been recently investigated and utilized for the design of novel prodrug 
linkers [31-37]. Using computational methods such as DFT, molecular 
mechanics and ab initio, various enzyme models were investigated for 
assigning the factors affecting the rate-determining step and playing 
dominant roles in governing the reaction rate. Among these enzyme 
models are: (a) proton transfer between two oxygens in Kirby’s acetals 
[38-47] and proton transfer between nitrogen and oxygen in [38-
47]; (b) intramolecular acid-catalyzed hydrolysis in some of Kirby’s 
maleamic acid amide derivatives [38-47]; (c) proton transfer between 
two oxygens in rigid systems as investigated by Menger [12-18]; (d) the 
acid-catalyzed lactonization of hydroxy-acids as studied by Cohen et al. 
[19] and Menger [12]; and (e) the SN2-based cyclization as studied by 
Brown [48], Bruice and Mandolini [9,49].

These studies have revealed the following conclusions: (i) rate 
enhancement in intramolecular processes is a result of both entropy 
and enthalpy effects. In intramolecular cyclization processes where 
enthalpic effects were predominant, steric effects were the determining 
factor for the acceleration, whereas proximity orientation was the 
determining factor in proton-transfer reactions. (ii) The distance 
between the two reacting centers is the main factor in determining 
whether the reaction type is intermolecular or intramolecular.  When 
the distance exceeded 3 Å, an intermolecular engagement was preferred 
because of the involvement of a water molecule (solvent). When the 
distance between the electrophile and nucleophile was <3 Å, an 
intramolecular engagement was preferred. (iii) The efficiency of proton 
transfer between two oxygens and between nitrogen and oxygen in 
Kirby’s enzyme models is attributed to a relatively strong hydrogen 
bonding in the products and the transition states leading to them [31-
37].

It was concluded from the studies on intramolecularity that there is 
a need to further investigate the reaction mechanism for assigning the 
factors determining the reaction rate. This would allow for better design 
of an efficient chemical device that can be used as a prodrug linker 
and that will have the potential to chemically and not enzymatically 
liberate the active drug in a programmable and controlled manner. 
For example, the mechanism for proton transfer in Kirby’s acetals 
were explored and directed the synthesis of novel prodrugs of aza-
nucleosides for the treatment of myelodysplastic syndromes where the 
prodrug linker is attached to the hydroxyl group of the nucleoside [50]. 
The prodrugs were designed such that they undergo cleavage reactions 
in physiological environments such as stomach, intestine, and/or blood 
circulation, with rates that are solely dependent on the structural 
features of the pharmacologically inactive linker. Different linkers 
were also investigated for the design of a large number of prodrugs 
such as anti-Parkinson (dopamine), [51] anti-viral (acyclovir), and 
[52] anti-malarial (atovaquone) with enhanced dissolution, membrane 
penetration, and bioavailability [53]. In addition, prodrugs for 
masking the bitter taste of atenolol, dopamine, pseudoephedrine, 
amoxicillin, cephalexin, cefaclor, and paracetamol were also designed 
and synthesized [54,55]. The role of the linkers in these prodrugs is to 
block the free amine or phenol group, which is responsible for the bitter 
taste of the drug, in the corresponding parental drugs and to enable the 
release of the drug in a programmable manner [50-55]. 

These examples highlight the great potential and impact of modern 
computational approaches for prodrug design. Furthermore, with the 
possibility of designing prodrugs that have different linkers, the rate of 

release of the parental drugs can be controlled without the presence of 
an enzyme.
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