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Abstract
The earth orbiting the sun, the electron bonded to a proton in the hydrogen atom are both manifestations of 

particles in motion bound by an inverse-square force and both are governed by the principle of least action (of all the 
possible paths the particles may take between two points in space and time, they take those paths for which the time 
integral of the Lagrangian or the difference, kinetic energy-potential energy, is the least) and shaped by the same 
Hamiltonian (or total energy) structure. For both types of motion, the invariants (or properties that are conserved) 
are the energy and angular momentum of the relative motion, and the symmetry is that of the rotational motion. 
Differences arise because the electric force bounding the electron to the proton is forty two orders of magnitude 
stronger than the gravitational force, and the smallness of the hydrogen atom brings about “quantum effects”: the 
mechanics of the microscopic particles which constitute the atom is wave-like. Yet the central concepts of mechanics 
are preserved in integrity: least action, invariants or conservation laws, symmetries, and the Hamiltonian structure.

The discussion in the sections that follow on the quantum-mechanical treatment of molecular structures is 
based for the most part on the books by Pople and Murrell [2,3], and is by no means comprehensive but hopefully 
will elucidate the most relevant concepts for performing the estimation of thermochemical and kinetic properties of 
elementary reactions.

The aim of quantum chemistry is to provide a qualitative and quantitative description of molecular structure and 
the chemical properties of molecules. The principal theories considered in quantum chemistry are valence bond 
theory and molecular orbital theory. Valence bond theory has been proven to be more difficult to apply and is seldom 
used, thus this discussion will deal only with the application of molecular orbital theory to molecular structures.

In molecular orbital theory, the electrons belonging to the molecule are placed in orbitals that extend all the 
different nuclei making-up the molecule (the simplest approximation of a molecular orbital being a simple sum of 
the atomic orbitals with appropiate linear weighting coefficients, Figure 1 below for carbon Monoxide as example), 
in contrast to the approach of valence bond theory in which the orbitals are associated with the constituent atoms. 
The full analytical calculation of the molecular orbitals for most systems of interest may be reduced to a purely 
mathematical problem, the central feature of which is the calculation and diagonalization of an effective interaction 
energy matrix for the system. In ab initio molecular orbital calculations, the parameters that appear in such an energy 
matrix are exactly evaluated from theoretical considerations, while in semi-empirical methods experimental data on 
atoms and prototype molecular systems are used to approximate the atomic and molecular integrals entering the 
expression for the elements of the energy interaction matrix.

Ab initio methods can be made as accurate as experiment for many purposes Zeener [4], the principal drawback 
to “high level” ab initio work is the cost in terms of computer resources which restrict it to systems of ten or fewer atoms 
even for the most experienced users. This is what draws the chemist to semi-empirical methods that can be easily 
applied to complex systems consisting of hundreds of atoms. Presently, useful semi-empirical methods are limited in 
execution by matrix multiplication and diagonalization, both requiring computer time proportional to N3 where N is the 
number of atomic orbitals considered in the calculation or basis set.

Keywords: Quantum chemistry; Chemistry; Chemical kinetics;
Modelling

Quantum-Chemistry Background
In classical mechanics, one is concerned with the trajectories of 

particles which theoretically can be calculated from knowledge of the 
initial conditions and the structure of the Hamiltonian H, or the sum of 
a kinetic-energy contribution T and potential-energy function V.

H=T+V (1)

The existence of the atom cannot be explained classically, but 
rather by the wave properties of the electron bonded to the nucleus. 
Schrodinger suggested that the proper way to describe the wave 
character of particles was to replace the classical kinetic and potential 
energy functions of with linear operator � �T,V  and a wave equation
of the form.

�H EΨ = Ψ                   (2)

Where the solutions, Ψ the so called wave functions, would 
describe the behavior of all the Particles, and the quantum-mechanical 
Hamiltonian above is or for one electron system such as the hydrogen 
atom, with the electron centered on the atomic nucleus:

� � �H T V= + (3)
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= − ∇
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                    (4)

�
2ZeV

r
= −                          (5)

Where m is the mass of the electron, r is the distance of the 
electron from the nucleus, Z is the atomic number, and e is the unit of 
electronic charge, and in equation (5) the Laplacian ▽2 is in Cartesian 
coordinates. For molecules more complex than the simple hydrogen 
atom (for ·which exact solutions to the Schrodinger equation can be 
found), the Born-Oppenheimer approximation states that because the 
nuclei are so much more massive than the electrons, the electrons adjust 
essentially instantaneously to any motion of the nuclei, consequently 
we may consider the nuclei to be fixed at some internuclear separation 
in order to solve the Schrodinger equation (2) for the electronic wave 
function [5], or

N elecΨ ≈ Ψ Ψ                       (6)

Where the first term in the product of equation (6) accounts for the 
motion of the nuclei and the second term involves the electron motion. 
Furthermore, introducing center -of- mass and relative coordinates, 
the nuclear wavefunction reduces to

N trans rot vib(C.M.)Ψ ≈ Ψ Ψ Ψ                      (7)

Where the center-of-mass translation, and rotational and 
vibrational contributions to the nuclear wave function are now 
explicitly shown. Thus, the problem of determining the structure of a 
complex molecule reduces to solving each Schrodinger equation for the 
electronic motion, the translational motion of the center of mass, and 
the rotational and vibrational motion of the nuclei separately. Thus, the 
electronic energy is estimated by the equation (similarly for the other 
types of motion).

�
elec

elec elec elecH (1,2,..., n) (1,2,..., n) E (1,2,..., n)Ψ = Ψ             (8)

for a molecule with n electrons, and for a given internuclear 
distance the total energy of the system is

0 2 1
T elec A B AB

A B
E E e Z Z r−

<

≈ + ∑                       (9)

Where the second term is the electrostatic internuclear repulsion 
energy and A,B designate the nuclei. Molecular orbital theory is 
concerned with electronic wave functions only, and henceforth the 
electronic subscripts will be dropped from the electronic Hamiltonian 
and wave function. The molecular energy given by (9) is the energy at 
absolute zero with no contributions from the translational, rotational 
or vibrational motions. The latter forms of energy must be considered 
to determine thermochemistry under conditions of practical interest 
[6].

T trans vib rot elecE E E E E≈ + + +                 (10)

Once the total energy ET of equation (10) is known for a given 
molecular geometry, a potential energy hyper surface (PES) can 
be generated as function of geometry, and the minima on the PES 
corresponds to the most stable configuration, or in mathematical terms 
for molecules or radicals,

0
TE / gi 0δ δ =

Where, gi is any geometrical variable.

The heat of formation for the molecule can then be obtained from 
the total energy of equation (10) via

n N
A A

f r k fi
k 1 i 1

H E E H
= =

∆ = − + ∆∑ ∑                  (11)

Where A A
k fiE and H∆  are the electron energies and the heats of 

formation of individual atoms, respectively? Clearly, this approach 
requires the accurate knowledge of the atomic heats of formation, 
which may or may not be available [6].

The electronic Hamiltonian (non-relativistic) is the given by the 
following expression in atomic units (h/2π=e=m=1)

� 2 1 1
p A AP pq

p A P p q

1H Z r r2
− −

<

= ∇ − +∑ ∑∑ ∑                  (12)

Where A -designate the nuclei, p, q electrons, and r is the 
interparticles distance.

The solutions to the electronic Schrodinger equation (8) are infinite 
but for stationary, bound states only the continuous, single-valued 
Eigen functions i that vanish at infinity need to be considered, and the 
electronic energies are the eigenvalues Ei or

�
i i iH EΨ = Ψ                       (13)

The Eigen functions are normalizable and mutually orthogonal 
(i.e., orthonormal) or mathematically they satisfy the condition

*
i j i j ijd | all i, jΨ Ψ τ = Ψ Ψ = δ∫                   (14)

In equation (14), the integration is over the volume element for the 
electron, and we have introduced the matrix or Dirac notation for the 
integral and δ is the Kronecker delta symbol. The electronic energy of 
the system Ei is the expectation value of the Hamiltonian

or

� �*
i j i j iH d | H | EΨ Ψ τ = Ψ Ψ =∫                    (15)

The complete treatment of a quantum-mechanical problem 
involving electronic structure requires the complete solution of the 
Schrodinger equation (8). This is only possible for one-electron 
systems, and for many-electron systems, where the electron repulsion 
term in the Hamiltonian renders an analytical solution impossible, 
the variation principle is applied (see next section for the application). 
This method in its full form is completely equivalent to the differential 
equations, but it has many advantages in the ways it can be adapted to 
approximate solution wave functions [2]. The variation principle states 
that if’ Ψ is a solution to equation (8) then for any small change δΨ,

�E | H | 0∆ = ∆ Ψ Ψ =                     (16)

If this criterion is applied to a completely flexible electronic 
wavefunction Ψ (in the appropiate number of dimensions), all the 
Eigen functions Ψi for the Hamiltonian will be obtained. If only an 
approximation to the wavefunction Ψ is used, then the Eigen functions 
Ψi and eigenvalues Ei are only approximations to the correct values, 
with the accuracy of the estimates improving as better approximations 
for the total wavefunction Ψ is used.

The orbital approximation suggests that the total electron 
wavefunction Ψ can be written as the Hartree product of one-electron 
wave functions, ψη (ξ), called spin orbitals [4] consisting of the product 

2 0 2
TE / (gi) 0δ δ >
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all other electrons affecting the electron in the molecular orbital ψi, or 
can be defined by

*
j j j 2

12

1J (1) (2) (2)d
r

= Ψ Ψ τ∫                     (26)

The final operator in the square bracket of equation (23) is the 
exchange potential and it arises from the effect of the antisymmetric of 
the total wavefunction on the correlation between electrons of parallel 
spin, or can be defined by

*
j i j i 2 j

12

1K (1) (1) [ (2) (2)d ] (1)
r

Ψ = Ψ Ψ τ Ψ∫                     (27)

To account for the correlation of electrons of different spin, the 
term missing in equation (23), a method such as CI or Configuration 
Interaction can be applied. This method incorporates virtual orbitals 
or nonbonding orbitals into the total wavefunction. This is beyond the 
scope of this discussion. For more information see Pople et al. [7]. The 
eigenvalues of equation (24) are the energies of electrons Occupying 
the orbitals ψi and are thus known as orbital energies, or

core
i ii ij ij

j
H (2 J K )ε = + −∑                   (28)

Where the one-electron core energy for an electron moving in the 
field of bare nuclei is:

� corecore *
ii i i 1H (1)H d= Ψ Ψ τ∫                     (29)

The coulomb interaction energy is given by:
*

ij i i j 1 2
12

1J (2) (1) (2)d d
r

= Ψ Ψ Ψ τ τ∫ ∫                 (30)

and the exchange energy is
* *

ij i j j i 1 2
12

1K (1) (2) (1) (2)d d
r

= Ψ Ψ Ψ Ψ τ τ∫ ∫                (31)

The general procedure for solving the Hartree-Fock equations is 
iterative Figure 2. A first solution for the molecular orbitals ψi is assumed 
for generating the Hartree-Fock operator F . The set of molecular 
orbitals generated by this estimate of the Hartree-Fock operator is 
then used to repeat the calculations and so on until the orbital no 
longer changes (within a certain tolerance) on further interactions. 
These orbitals are said to be self-consistent with the potential field 
they generate. In addition to the n occupied orbitals, there will be 
unoccupied orbitals called virtual orbitals of higher energy.

The method outlined above for solving the Hartree-Fock 
equations is impractical for molecular systems of any size and other 
approaches must be found [2]. The most rewarding approach consists 
of approximating the molecular orbitals by a linear combination of 
atomic orbitals or LCAO in the form 

i iCµ µ
µ

Ψ = φ∑                 (32)

Where the ϕμ are the atomic orbitals constituting the molecular 
orbital or basis set.

In carrying out numerical calculations of molecular orbitals, it is 
necessary to have convenient analytical forms for the atomic orbitals 
of equation (32) for each type of atom in the molecule. These are 
the solutions of the Schrodinger equation for one-electron systems 
(H-atom) can be written in the form

lmY ( , ) ( ) ( )θ ϕ = Θ θ Φ ϕ  

of spatial and spin functions, where ψη (ξ) is the spin function that can 
take values α, or β or,

1 2 3 n(1, 2,.., n) O(s) A[ (1) (1) (2) (2) (3) (3)..... (n) (n)]Ψ = Ψ α Ψ β Ψ α Ψ β          (17)

In equation (17) A is the antisymmetrizer, ensuring that the 
wavefunction changes sign on interchange of any two electrons in 
accordance with the Pauli exclusion principle, and O (S) is a spin 
projector operator that ensures that the wavefunction remains an Eigen 
function of the spin-squared operator S2.

2S S(S 1)Ψ = + Ψ                      (18) 

O(S) can become quite complex [4], but for a closed shell molecule, 
with all electrons paired in the spin Orbits 0(S)=1. Thus, for a closed-
shell system with 2n electrons, and two electrons paired in each spatial 
orbital, the many-electron wavefunction becomes:

1 1 2 n n(1, 2,..., n) A[ (1) (1) (2) (2) (3) (3).... (2n 1) (2n 1) (n) (n)]Ψ = Ψ α Ψ β Ψ α Ψ − α − Ψ β          (19)

Self-Consistent Molecular Orbital Theory 
Having established the proper form for the many-electron wave 

function for closed shells as a single determinant of spin orbitals (Slater 
determinant) or equation (19), the discussion now proceeds to the 
details of the actual determination of the electron spatial orbitals ψi 
for a closed-shell system (for treatment of systems for which there are 
unpaired electrons [2]. This involves the application of the variational 
principle or equation (16) of the previous section. The best molecular 
orbitals, therefore, are obtained by varying all the contributing one-
electron functions ψ1, ψ2, ψ3,…ψn in the Slater determinant equation 
(19) until the electronic energy achieves its minimum value. This will 
give the best approximation to the many-electron wavefunction Ψ{1,2, 
...., n), and the electron orbital or molecular orbitals ψi so obtained 
are referred to as self- consistent or Hartree-Fock molecular orbitals. 
Mathematically, the problem involves the minimization of the total 
electron energy with the orthonormality constraint for the electron 
orbitals 

or Minimize ij ij
i i

G E 2 S= − ε∑∑                    (20)

Orthonormality *
ij i j ijS d= Ψ Ψ τ = δ∫ (21)

And �E (1,2,.., n) | H | (1,2,.., n)= Ψ Ψ  (22)

Ψ (1, 2, .... , n) is given by equation (19)

The minimization consists of setting δG=0 and leads to the 
following differential Equations [2]

� � �core

j j i i i
j

{H 2J K }+ − Ψ = ε Ψ∑  or              (23)


i i iF i 1, 2,.., nΨ = ε Ψ =                                 (24)

In equation (24)  is the one-electron Hartree-Fock Hamiltonian 
operator consisting of the terms defined in equation (23) within the 
brackets. Equation (24) is known as the Hartree - Fock equation and 
states that the best molecular orbitals are Eigen functions of the Hartree 
- Fock Hamiltonian operator. The first operator of the Hartree-Fock 
Hamiltonian in equation (23) is the one-electron Hamiltonian for an 
electron moving in the field of the bare nuclei, or

� core 2 1
p A PA

A

1H(p) Z r2
−−= ∇ −∑                    (25)

The second operator accounts for the average effective potential of 
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Where r, θ, and ϕ, are the spherical coordinates centered on the 
atom. The angular part of the above equation or Yl, m (θ,ϕ) are the 
well-known spherical harmonics defined as:

lmY ( , ) ( ) ( )θ ϕ = Θ θ Φ ϕ  

Where 1 is the azimuthal quantum number and m is the magnetic 
quantum number. For the radical part of the atomic function, the so 
called Slater Type Orbitals (STO) are used with the form

n 1/2 1/2 n 1
n,lR (r) (2 ) [(2n)] r exp( r)+ − −= ς −ς

Where n is the principal quantum number, and ς ; is the orbital 
exponent, a function of the atomic number.

The variational principle is then applied as previously outlined 
except the total electron wavefunction consists of the product of 
molecular orbitals such as given in equation (32) above and the 
orthonormality of the electron wavefunction leads to

*
i vj v ij

v
C .C .Sµ µ

µ

= δ∑                     (33)

Where S μυ is the overlap integral for the atomic orbitals, or

v v 1S (1) (1)dµ µ= φ φ τ∫                     (34)

This leads to the so called Roothan equations given by:

v i v vi
v

(F S )C 0i 1,2,.., nµ µ− ε = =∑                      (35)

Where the elements of the matrix representation of the Hartree-
Fock Hamiltonian are

v vF H P [( v | ) 1/ 2( v | )]µ µ λσ
λσ

= + µ λσ − µ λσ∑                (36)

and
occ

*
v i vi

i
P 2 C Cµ µ= ∑                   (37)

� core

v v 1H (1)H (1)dµ µ= φ φ τ∫                       (38)

* *
v 1 2

12

1( v | ) (1) (1) (2) (2)d d
rµ λ σµ λσ = φ φ φ φ τ τ∫ ∫                   (39)

The matrix of elements Pμν is the electron density matrix, Hμν are 
the elements of the core Hamiltonian with respect to atomic orbitals, 
and equation (39) is the general two- electron interaction integral over 
atomic orbitals. Equation (35) is an algebraic equation in contrast with 
the differential equation (24) previously derived.

The Roothan equation (35) can be written in matrix form as

FC=SCE                      (40)

Where E is the diagonal matrix of the εi. The matrix elements of the 
Hartree-Fock Hamiltonian operator F are dependent on the orbitals 
through the elements Pμν, and the Roothan equations are solved by first 
assuming an initial set of linear expansion coefficients cμi generating 
the corresponding density matrix Pμν and computing a first guess to Fμν.

With the transformations * 1/2 1/2 * 1/2F S FS and C S C− −= = , equation(40) 
can be made into an eigenvalue form or

F*C*=C*E                     (40b)

The diagonalization procedure is affected by standard matrix 
eigenvalue techniques, and new expansion coefficients are calculated. 

The whole process is repeated until the coefficients no longer change 
within a given tolerance on repeated iteration [2]. It is useful at this 
point to summarize the hierarchy of approximations involved in 
the SCF-MO model since we have now discussed all the necessary 
approximations [8]:

(1) The first level of approximations corresponds to the non-
relativistic, fixed nucleus Schrodinger equation, 

HΨ=EΨ

(2) The variational solution of the Schrodinger Equation 
corresponds to the best possible solution in the mean or integrated 
value, the differential Schrodinger equation has point by point 
solutions.

(3) The orbital model where the wave function Ψ is expressed as the 
product of the electron wave functions, equation (17) is an exact solution 
of the Schrodinger equation when the interaction between particles is 
neglected. Thus its use in the full Hamiltonian is an approximation that 
does not fully take into account the correlated motion of the electrons 
(physically this means interpreting the distribution of n electrons in 
terms of the separate distributions of the model one-electron orbitals. 
As the above analysis showed, a correlation term for electrons of 
different spin is missing).

(4) By using a single configuration for the form of the wave 
function Ψ, equation (17), the exact form of the optimum total electron 
wave function is lost here. A more exact solution is of the form where 
the wave function is a liner superposition of all possible configurations 
that are solutions to the Schrodinger equation with the same ground 
energy E. Due to the approximate nature of the one-electron wave 
functions that make-up Ψ, the configurations differ in in the form of 
the component electron wavefunction but the electron energies sum to 
the same ground energy E.

i i configC −Ψ = Ψ∑
(5) With the LCAO approximation the exact form of optimum AO 

is lost. The molecular orbitals are limited by the capabilities of the AO.

Semi-Empirical Methods
This method is part of the software package MOPAC or general-

purpose semi-empirical molecular orbital package developed through 
the Quantum Chemistry Program Exchange at Indiana University. 
As stated at the very outset, semi-empirical methods are considerable 
less costly than ab-initio calculations in terms of computer resources 
and can be applied to systems consisting of hundreds of atoms. In 
semi-empirical methods the matrix elements of the Hartree-Fock 
Hamiltonian or equation (24) are based on experimental data on 
atoms and prototype molecular systems. It is important to note here 
that by deriving the elements of the energy matrix semi-empirically, 
semi-empirical guantum chemistry methods make some allowance 
for electron correlation effects that are normally neglected in the M.O. 
approach [9].

Tables 1a-1c on the pages that follow outlines the most important 
semi-empirical Molecular Orbital (M.O.) methods. Historically, the first 
M.O. semi-empirical method was Ruckel’s M.O. theory of π-electrons 
where the molecular orbitals are a LCAO and solutions were seeked for 
the Hamiltonian operator. The electrons were considered as moving 
in the effective potential of the inner core-electrons. The overlap 
integral on two different atoms M, N or Sμυ is the Kronecker delta. This 
method was very important in that it showed rather quickly those M.O. 
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methods that diagonilized energy matrices gave qualitatively important 
results [4]. The next important development is the self-consistent field 
(SCF)-M.O. theory of Pariser-Parr-Pople (PPP) as applied to a π- 
electron system or Zero-Differential Overlap (ZDO) where solutions 
are sought for the Hartree-Fock equation (24). In the ZDO-SCF-M.O. 
method, the only two electron two  center repulsion integral retained 
is·an integral of the type (μμ |λλ), all others are neglected. Other 
elements needed to complete the energy matrix diagonalization are 
given by semi-empirical values. The next level of complexity is ZDO-
All Valence Electrons methods (Table 1b) where all valence electrons 
are considered (and not just π  electrons in a conjugated system such as 
benzene) in the effective potential of the core composed of the nuclei 
and inner electrons (the so called core approximation). As Tables 1b,1c 
shows, semi-empirical methods CNDO, PNDO, INDO, MINDO, and 
NDDO fall within the ZDO approximation.

The CNDO method makes the s-orbital approximation to retain 
two-electron two  center integrals of the type (μμ|λλ). Murrell states 
[3]: “If the full SCF equations are solved without any approximations 
then the calculated energies and electron distribution will be the 
same whatever the choice of coordinate axes. In other words, it does 
not matter how we choose to direct our angle-dependent orbitals 
(p,d etc). The results must also be the same whether we choose to 
take a linear combination of atomic orbitals or a linear combination 
of hybridized orbitals which are themselves linear combinations of 
atomic orbitals”. What this means is that the SCF calculations need 
to be invariant to an orthogonal transformation of the atomic orbital 
basis and approximations to the SCF equations may not satisfy the 
conditions of rotational and hybridizational invariance. This problem 
does not arise in π-electron theory as the molecular symmetry leads to 

a natural choice of axis for the π orbitals, or an axis perpendicular to the 
molecular plane. Thus, in the CNDO method the invariance conditions 
require that all two-center and one-center integrals be calculated using 
the s-orbital approximation or

( )2 2
M N MN( | ) s | s Two atoms M, Nµµ λλ = = γ

Two atoms M, N (41) and s same atom M (42)

( )2 2
M M M,M( | ) s | s Sameatom Mµµ λλ = = γ

All other integrals necessary to diagonilize the energy matrix are 
given semi-empirical values [3]. In the PNDO approximation, the 
s-orbital approximation is abandoned with the two-centre two-electron 
integrals given semi-empirical values. The most important feature of 
the PNDO method is that the two-electron two-centre integrals are 
evaluated only after transforming to a set of symmetry axis for the two 
atoms involved in the integral. The INDO method retains the s-orbital 
approximation for two-centre integrals except that one-centre two 
electron integrals are given empirical values. The · MINDO method of 
Baird and Dewar is based on INDO with some modifications and the 
semi-empirical parameters were given values such as to get a best fit to 
the experimental heats of formation of some chosen molecules. This 
philosophy differs from that of the Pople School in which is tried to 
reproduce the results of non-empirical SCF calculations using the same 
set of atomic orbitals [3].

The NDDO method comes the closest to the full SCF equations 
of Roothan and is therefore more difficult to apply than the previous 
methods discussed in the NDDO method, in addition to retaining two-Table 1a: The Development of Semi-Empirical Quantum Chemistry Methods.

Table 1b: The Development of Semi-empirical Methods.
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centre integrals of the type (μμ | λλ.), the two-centre integral is retained. 
The MNDO method of the MOPAC software (the method chosen for this 
dissertation) falls within this level of approximation. AMI is the second 
parametrization of the original MNDO, with PM3 being the third.

M M N N( | )µ λ µ λ

To illustrate the MNDO Fock matrix elements, we will use the 
notation of Dewar and Thiel [9]. The atomic orbitals (A.O) φµ and ϕν  
are centered on atom A and AO. φλ and 

σ
ϕ at atom B. If necessary, 

superscripts A or B will assign a particular symbol to atom A or B, 
respectively. Thus, the MNDO Fock matrix elements are [9]:

A B

,B vv ,
B v B ,

F U V P [( , vv) 1/ 2( v, v)] P ( , )µµ µµ µµ λ σ
λ σ

= + + µµ − µ µ + µµ λσ∑ ∑ ∑∑          (43)

A B

v v,B v ,
B v B ,

F V 1/ 2P [3( v, v) ( , vv)] P ( v, )µ µ µ λ σ
λ σ

= + µ µ − µµ + µ λσ∑ ∑ ∑∑          (44)

A B

v,
v

1F P ( v, )2µλ µλ σ
α

= β − µ λσ∑∑                  (45)

The Fock matrix terms of equations (43), (45) are as follows:

(a) One-center one-electron energies U µµ which represent the 
sum of the kinetic energy of an electron in A.0. φµ

 at atom A and its 
potential energy due to the attraction by the core of atom A.

(b) One-center two-electron repulsion integrals 

( , ) and ( v, )µµ λσ µ λσ

(c) Two-center one-electron core resonance integral
2

A B
1( V V ) d2µλ µ λβ = φ − ∇ + + φ τ∫                     (46)

where VA and VB are the effective potentials of the atom cores.

(d) Two-center one-electron attractions ,BVµν , between an electron 
in the distribution φφ νµ

at atom A and the core of atom B.

(e) Two-center two-electron repulsion integrals 

( , ) and ( v, )µµ λσ µ λσ
In the MNDO method, the various Fock matrix elements are 

determined either from experimental data or from semi-empirical 
expressions which contain numerical atomic parameters that can be 
adjusted to fit experimental data. The experimental data to be fitted 
include heats of formation, geometrical variables (e.g., bond angle), 
dipole moments, and first vertical ionization potentials for chosen 
standard molecules. Atomic parameters were optimized for H, B, C, 
N, 0, and F [9].

Table 2 depicts a comparison of MNDO with AMI and PM3 
methods. As table shows, MNDO estimates of the heats of formation of 
PAH (Polycyclic Aromatic Hydrocarbons) are superior to others. Zemer 
[4] states that reaction barriers using. MNDO are generally too high, 
whereas those obtained from AMI are in some instances considerably 
better, although also often too high. To quote Dewar [10] “A major 
problem in studying reactions by any current theoretical model is the 
lack of experimental data for the intermediate sections of potential 
surfaces and for the geometries of transition states. Calculations for 
these consequently involve the extrapolation of an empirical procedure 
into areas where it has not been, and indeed cannot be, tested. Such 
an extrapolation is safer, the better the performance of the method in 
question in all areas where it can be tested”.

Group Equivalent Corrections to MNDO
Group equivalent corrections were applied to semi-empirically 

calculated heats of formation as demonstrated by Schulman et al., Peck 
et al. [11,12] and more recently by Wang. The underlying principle of 
the group equivalent correction is similar to that of Benson’s group 
additivity method [13]. In Benson’s method, a molecule’s structural 
group contributes a portion of the total property of the molecule, 
while in the group equivalent corrections; it is assumed that this same 
structural group contributes a given amount of error to the deviation 
of the semi-empirically calculated heat of formation, for example, 
from experimentally determined values. Thus according to the group 
equivalent method, the heat of formation of a given molecule is 
calculated from the following expression

n

f .298 f .298 i
i 1

H H (S/ E) GE
=

∆ = ∆ −∑
Where f .298H (S/ E)∆ is the semi-empirical heat of formation and 

GE; is the group equivalent correction assumed to be independent of 
the overall structure of the molecule.

The group equivalent method will be illustrated for two molecules, 
benzene and naphthalene. Benzene, according to Benson’s group 
additivity method, consists of six Cs- (H) groups. The experimentally 

Species (Kcal/ Mol)fH� Difference

Experiment PM3 MNDO AMI
Cyclopentadiene 32.10 -0.40 -0.08 4.90

Benzene 19.81 3.58 1.44 2.14
Naphthalene 36.05 4.51 2.15 4.42

Biphenyl 43.53 4.39 2.39 3.93
Anthracene 55.20 6.30 3.47 7.56

Table 2: Heats of Formation (MOPAC 93 Manual).

Table 1c: The Development of Semi-Empirical Methods.
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Figure 1: Carbon Monoxide Molecular Orbital Diagram.

Figure 2: HF SCF Computation Procedure Flow Chart (Closed Shell) [14].
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c. Understanding Molecular Simulations, Frenkel D, Smit B 2002

d. Essentials of Computational Chemistry, Cramer, Christopher J
2004

e. Computational Chemistry: A Practical Guide for Applying
Techniques to Real World problems, Young, David C 2001.
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determined heat of formation is 19.81 kcal/mol and from the MOPAC 
93 MANUAL, the MNDO calculated heat of formation is 1.44 k cal/
mol higher than experimental. Thus, the GE correction for each group is

GE CB-H=144/6=0.24 kcal/mol

or a 0.24 kcal/mol correction for each CB-H group. With the 
first GE correction determined, the next GE correction for a more 
complex aromatic such as naphthalene can be evaluated. Naphthalene 
consists of 8 CB-H groups and 2 CBF- (CB)2(CBF) groups, with the 
experimental value for the heat of formation as 36.05 kcal/mol and 
the MNDO calculated value being 2.15 kcal/mol higher (MOPAC 93 
MANUAL). The GE correction for the CBF- (CB)2(CBF) group is the 
calculated as follows or a 0.115 kcal/mol correction for each group. This 
same procedure would be followed to determine the GE correction for 
new groups in the next more complex PAH such as phenanthrene and 
so on.

p H

B.F B 2

C
C (C ) (BF)

2.15 8GE 2.15 8(0.24)GE 0.115kcal / mol
2 2

−

−

− −
= = =

Computational Chemistry Software & Guides
Avery extensive compilation of Quantum Chemistry software can 

be found in Wikipedia at:

https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_
solid-state_physics_software

Software is available to conduct semi-empirical, ab-initio (HF 
SCF, post HF), density functional theory, molecular mechanics 
calculations. The author is most familiar with MOPAC for semi-
empirical calculations and Spartan for ab-initio computations.

There are a good number of books or guides to Computational 
Quantum Chemistry that are most popular. These are the following:

a. Introduction to Computational Chemistry, Jensen, Frank, 2007

b. Molecular Modeling Principles and Aplications, Bleach, Andrew R,
2001

https://books.google.co.in/books?hl=en&lr=&id=IoPSFTtvJJgC&oi=fnd&pg=PA95&dq=%29+Detailed+Chemical+Kinetic+Modeling:+Chemical+Reaction+Engineering+of+the+Future+in+Advances+in+Chemical+Engineering&ots=rAHIRhYJhY&sig=-QHqFGjrKGyvdju4un5ke4V4F54#v=onepage&q=%29 Detailed Chemical Kinetic Modeling%3A Chemical Reaction Engineering of the Future in Advances in Chemical Engineering&f=false
https://books.google.co.in/books?hl=en&lr=&id=IoPSFTtvJJgC&oi=fnd&pg=PA95&dq=%29+Detailed+Chemical+Kinetic+Modeling:+Chemical+Reaction+Engineering+of+the+Future+in+Advances+in+Chemical+Engineering&ots=rAHIRhYJhY&sig=-QHqFGjrKGyvdju4un5ke4V4F54#v=onepage&q=%29 Detailed Chemical Kinetic Modeling%3A Chemical Reaction Engineering of the Future in Advances in Chemical Engineering&f=false
http://pubs.acs.org/doi/abs/10.1021/ja00457a004
http://pubs.acs.org/doi/abs/10.1021/ja00457a004
http://pubs.acs.org/doi/abs/10.1021/ja00299a024
http://pubs.acs.org/doi/abs/10.1021/ja00299a024
http://pubs.acs.org/doi/abs/10.1021/ja00299a024
http://pubs.acs.org/doi/abs/10.1021/j100380a022
http://pubs.acs.org/doi/abs/10.1021/j100380a022
http://onlinelibrary.wiley.com/doi/10.1002/bbpc.19770810919/abstract
http://onlinelibrary.wiley.com/doi/10.1002/bbpc.19770810919/abstract
http://onlinelibrary.wiley.com/doi/10.1002/bbpc.19770810919/abstract
http://pubs.acs.org/doi/abs/10.1021/ar50107a003
https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software
https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software
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