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Abstract

The earth orbiting the sun, the electron bonded to a proton in the hydrogen atom are both manifestations of
particles in motion bound by an inverse-square force and both are governed by the principle of least action (of all the
possible paths the particles may take between two points in space and time, they take those paths for which the time
integral of the Lagrangian or the difference, kinetic energy-potential energy, is the least) and shaped by the same
Hamiltonian (or total energy) structure. For both types of motion, the invariants (or properties that are conserved)
are the energy and angular momentum of the relative motion, and the symmetry is that of the rotational motion.
Differences arise because the electric force bounding the electron to the proton is forty two orders of magnitude
stronger than the gravitational force, and the smallness of the hydrogen atom brings about “quantum effects”: the
mechanics of the microscopic particles which constitute the atom is wave-like. Yet the central concepts of mechanics
are preserved in integrity: least action, invariants or conservation laws, symmetries, and the Hamiltonian structure.

The discussion in the sections that follow on the quantum-mechanical treatment of molecular structures is
based for the most part on the books by Pople and Murrell [2,3], and is by no means comprehensive but hopefully
will elucidate the most relevant concepts for performing the estimation of thermochemical and kinetic properties of
elementary reactions.

The aim of quantum chemistry is to provide a qualitative and quantitative description of molecular structure and
the chemical properties of molecules. The principal theories considered in quantum chemistry are valence bond
theory and molecular orbital theory. Valence bond theory has been proven to be more difficult to apply and is seldom
used, thus this discussion will deal only with the application of molecular orbital theory to molecular structures.

In molecular orbital theory, the electrons belonging to the molecule are placed in orbitals that extend all the
different nuclei making-up the molecule (the simplest approximation of a molecular orbital being a simple sum of
the atomic orbitals with appropiate linear weighting coefficients, Figure 1 below for carbon Monoxide as example),
in contrast to the approach of valence bond theory in which the orbitals are associated with the constituent atoms.
The full analytical calculation of the molecular orbitals for most systems of interest may be reduced to a purely
mathematical problem, the central feature of which is the calculation and diagonalization of an effective interaction
energy matrix for the system. In ab initio molecular orbital calculations, the parameters that appear in such an energy
matrix are exactly evaluated from theoretical considerations, while in semi-empirical methods experimental data on
atoms and prototype molecular systems are used to approximate the atomic and molecular integrals entering the
expression for the elements of the energy interaction matrix.

Ab initio methods can be made as accurate as experiment for many purposes Zeener [4], the principal drawback
to “high level” ab initio work is the cost in terms of computer resources which restrict it to systems of ten or fewer atoms
even for the most experienced users. This is what draws the chemist to semi-empirical methods that can be easily
applied to complex systems consisting of hundreds of atoms. Presently, useful semi-empirical methods are limited in
execution by matrix multiplication and diagonalization, both requiring computer time proportional to N® where N is the

number of atomic orbitals considered in the calculation or basis set.
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Quantum-Chemistry Background

In classical mechanics, one is concerned with the trajectories of
particles which theoretically can be calculated from knowledge of the
initial conditions and the structure of the Hamiltonian H, or the sum of
a kinetic-energy contribution T and potential-energy function V.

H=T+V (1)

The existence of the atom cannot be explained classically, but
rather by the wave properties of the electron bonded to the nucleus.
Schrodinger suggested that the proper way to describe the wave
character of particles was to replace the classical kinetic and potential
energy functions of with linear operator % J@r and a wave equation
of the form. ’

HY = E¥ @

Where the solutions, ¥ the so called wave functions, would
describe the behavior of all the Particles, and the quantum-mechanical
Hamiltonian above is or for one electron system such as the hydrogen
atom, with the electron centered on the atomic nucleus:

H=T+V ®
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Where m is the mass of the electron, r is the distance of the
electron from the nucleus, Z is the atomic number, and e is the unit of
electronic charge, and in equation (5) the Laplacian V?is in Cartesian
coordinates. For molecules more complex than the simple hydrogen
atom (for -which exact solutions to the Schrodinger equation can be
found), the Born-Oppenheimer approximation states that because the
nuclei are so much more massive than the electrons, the electrons adjust
essentially instantaneously to any motion of the nuclei, consequently
we may consider the nuclei to be fixed at some internuclear separation
in order to solve the Schrodinger equation (2) for the electronic wave
function [5], or

¥ r W W (©)

Where the first term in the product of equation (6) accounts for the
motion of the nuclei and the second term involves the electron motion.
Furthermore, introducing center -of- mass and relative coordinates,
the nuclear wavefunction reduces to

Y.~V (CMIY, Y., @

Where the center-of-mass translation, and rotational and
vibrational contributions to the nuclear wave function are now
explicitly shown. Thus, the problem of determining the structure of a
complex molecule reduces to solving each Schrodinger equation for the
electronic motion, the translational motion of the center of mass, and
the rotational and vibrational motion of the nuclei separately. Thus, the
electronic energy is estimated by the equation (similarly for the other
types of motion).

Heee(L2,em)¥ _(1,2,in) =B W (L2,0n) @)

for a molecule with n electrons, and for a given internuclear
distance the total energy of the system is

Eg ~Eg. + Z eZZAZBrAIIB 9)
A<B

Where the second term is the electrostatic internuclear repulsion
energy and A,B designate the nuclei. Molecular orbital theory is
concerned with electronic wave functions only, and henceforth the
electronic subscripts will be dropped from the electronic Hamiltonian
and wave function. The molecular energy given by (9) is the energy at
absolute zero with no contributions from the translational, rotational
or vibrational motions. The latter forms of energy must be considered
to determine thermochemistry under conditions of practical interest
[6].

E.~E...+E tE,+tE

Once the total energy E  of equation (10) is known for a given
molecular geometry, a potential energy hyper surface (PES) can
be generated as function of geometry, and the minima on the PES

corresponds to the most stable configuration, or in mathematical terms
for molecules or radicals,

SE' /5gi =0
§E" /5(gi)’ > 0

elec

trans

elec

(10)

trans elec

Where, g, is any geometrical variable.

The heat of formation for the molecule can then be obtained from
the total energy of equation (10) via

n N
AH; =E - Y E +> AH} (11)
k=1 i=1
Where E and AH are the electron energies and the heats of
formation of individual atoms, respectively? Clearly, this approach
requires the accurate knowledge of the atomic heats of formation,
which may or may not be available [6].

The electronic Hamiltonian (non-relativistic) is the given by the
following expression in atomic units (h/2n=e=m=1)

— 1 2 -1 -1
H=Y Jvi-3> > z0+ 2 r, (12
P A P p<q
Where A -designate the nuclei, p, q electrons, and r is the
interparticles distance.

The solutions to the electronic Schrodinger equation (8) are infinite
but for stationary, bound states only the continuous, single-valued
Eigen functions i that vanish at infinity need to be considered, and the
electronic energies are the eigenvalues E, or

HY, =E ¥, (13)
The Eigen functions are normalizable and mutually orthogonal
(i.e., orthonormal) or mathematically they satisfy the condition

[wwde=(¥,|¥))=3,

1

alli, j (14)

In equation (14), the integration is over the volume element for the
electron, and we have introduced the matrix or Dirac notation for the
integral and § is the Kronecker delta symbol. The electronic energy of
the system Ei is the expectation value of the Hamiltonian

or
j\Pfﬁ\PJdr:<wi |ﬁ|\}fj>=1~:i (1)

The complete treatment of a quantum-mechanical problem
involving electronic structure requires the complete solution of the
Schrodinger equation (8). This is only possible for one-electron
systems, and for many-electron systems, where the electron repulsion
term in the Hamiltonian renders an analytical solution impossible,
the variation principle is applied (see next section for the application).
This method in its full form is completely equivalent to the differential
equations, but it has many advantages in the ways it can be adapted to
approximate solution wave functions [2]. The variation principle states
that if’ W is a solution to equation (8) then for any small change 8%,

AE:A<\P|F{|\P>:0 (16)

If this criterion is applied to a completely flexible electronic
wavefunction ¥ (in the appropiate number of dimensions), all the
Eigen functions ¥, for the Hamiltonian will be obtained. If only an
approximation to the wavefunction ¥ is used, then the Eigen functions
Y. and eigenvalues E, are only approximations to the correct values,
with the accuracy of the estimates improving as better approximations
for the total wavefunction V¥ is used.

The orbital approximation suggests that the total electron
wavefunction ¥ can be written as the Hartree product of one-electron
wave functions, yn (§), called spin orbitals [4] consisting of the product
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of spatial and spin functions, where yn (§) is the spin function that can
take values a, or fp or,

Y(1,2,...0) = O(s) A[Y,(Da(D¥,(2)B(2) ¥ 3)a3).... ¥, (mB(m)]  (17)

In equation (17) A is the antisymmetrizer, ensuring that the
wavefunction changes sign on interchange of any two electrons in
accordance with the Pauli exclusion principle, and O (S) is a spin
projector operator that ensures that the wavefunction remains an Eigen
function of the spin-squared operator S2

S’ =S(S+1)¥ (18)

O(S) can become quite complex [4], but for a closed shell molecule,
with all electrons paired in the spin Orbits 0(S)=1. Thus, for a closed-
shell system with 2n electrons, and two electrons paired in each spatial
orbital, the many-electron wavefunction becomes:

Y(1,2,...m) = A[¥,(Da()¥,(2B2)Y,3)a)...¥,2n-Da2n-H¥, @Bm]  (19)

Self-Consistent Molecular Orbital Theory

Having established the proper form for the many-electron wave
function for closed shells as a single determinant of spin orbitals (Slater
determinant) or equation (19), the discussion now proceeds to the
details of the actual determination of the electron spatial orbitals y,
for a closed-shell system (for treatment of systems for which there are
unpaired electrons [2]. This involves the application of the variational
principle or equation (16) of the previous section. The best molecular
orbitals, therefore, are obtained by varying all the contributing one-
electron functions y,, ¥2, y3,...yn in the Slater determinant equation
(19) until the electronic energy achieves its minimum value. This will
give the best approximation to the many-electron wavefunction ¥{1,2,
..., n), and the electron orbital or molecular orbitals Y, so obtained
are referred to as self- consistent or Hartree-Fock molecular orbitals.
Mathematically, the problem involves the minimization of the total
electron energy with the orthonormality constraint for the electron
orbitals

or Minimize G=E- 22 Z 8USU (20)
Orthonormality Sij = J-\P?‘de‘c = 6ij (21)

AndE = <‘P(l,2,..,n) H|wq, 2,..,n)> @)
¥ (1,2, ..., n) is given by equation (19)

The minimization consists of setting §G=0 and leads to the
following differential Equations [2]

HT D2V K, =g, o (23)
J

A~

FY, =¢ ¥,

In equation (24) B is the one-electron Hartree-Fock Hamiltonian
operator consisting of the terms defined in equation (23) within the
brackets. Equation (24) is known as the Hartree - Fock equation and
states that the best molecular orbitals are Eigen functions of the Hartree
- Fock Hamiltonian operator. The first operator of the Hartree-Fock
Hamiltonian in equation (23) is the one-electron Hamiltonian for an
electron moving in the field of the bare nuclei, or

F[(p)core = _12V§ _ZZArl;/i (25)

A
The second operator accounts for the average effective potential of

i=12,..,n (24)

all other electrons affecting the electron in the molecular orbital ,, or
can be defined by

~ * 1
Jil) = I‘Pj(Z)r—‘Pj(Z)drz (26)
12
The final operator in the square bracket of equation (23) is the
exchange potential and it arises from the effect of the antisymmetric of
the total wavefunction on the correlation between electrons of parallel
spin, or can be defined by

* 1
Km¥,0)=[[¥,Q—7,@de]¥,0) e

12
To account for the correlation of electrons of different spin, the
term missing in equation (23), a method such as CI or Configuration
Interaction can be applied. This method incorporates virtual orbitals
or nonbonding orbitals into the total wavefunction. This is beyond the
scope of this discussion. For more information see Pople et al. [7]. The
eigenvalues of equation (24) are the energies of electrons Occupying

the orbitals y, and are thus known as orbital energies, or

g =H" + Z (2 Jij - Kij) (28)
j

Where the one-electron core energy for an electron moving in the
field of bare nuclei is:

HY™ = [W(OH ¥ dr, (29)
The coulomb interaction energy is given by:
. 1
=] Y)Y, ()Y(2)dr d, (30)
12

and the exchange energy is 1
K; = ”‘Pr(l)‘Pj(z)—‘I’j(l)‘Pi (2)dt,dt, Gy
I,

The general procedure for solving the Hartree-Fock equations is
iterative Figure 2. A first solution for the molecular orbitals y, is assumed
for generating the Hartree-Fock operator . The set of molecular
orbitals generated by this estimate of the Hartree-Fock operator is
then used to repeat the calculations and so on until the orbital no
longer changes (within a certain tolerance) on further interactions.
These orbitals are said to be self-consistent with the potential field
they generate. In addition to the n occupied orbitals, there will be
unoccupied orbitals called virtual orbitals of higher energy.

The method outlined above for solving the Hartree-Fock
equations is impractical for molecular systems of any size and other
approaches must be found [2]. The most rewarding approach consists
of approximating the molecular orbitals by a linear combination of
atomic orbitals or LCAO in the form

\Pi = Zcui(bu (32)
n

Where the ¢u are the atomic orbitals constituting the molecular
orbital or basis set.

In carrying out numerical calculations of molecular orbitals, it is
necessary to have convenient analytical forms for the atomic orbitals
of equation (32) for each type of atom in the molecule. These are
the solutions of the Schrodinger equation for one-electron systems
(H-atom) can be written in the form

Y,,(6,0) =0(0)(¢)
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Where r, 6, and ¢, are the spherical coordinates centered on the
atom. The angular part of the above equation or Y1, m (6,4) are the
well-known spherical harmonics defined as:

Y1 (6,0) = O(6)D(9)

Where 1 is the azimuthal quantum number and m is the magnetic
quantum number. For the radical part of the atomic function, the so
called Slater Type Orbitals (STO) are used with the form

R, (1) =(20)""[(2m)] "*1" " exp(~cr)

Where n is the principal quantum number, and G ; is the orbital
exponent, a function of the atomic number.

The variational principle is then applied as previously outlined
except the total electron wavefunction consists of the product of
molecular orbitals such as given in equation (32) above and the
orthonormality of the electron wavefunction leads to

>.C,.C,8,, =3, (33)
uv
Where S is the overlap integral for the atomic orbitals, or

S, = [ 6, (Do, (Hdr, ()

This leads to the so called Roothan equations given by:
> (F,-¢S,)C,;=0i=12,..n (35)
v

Where the elements of the matrix representation of the Hartree-
Fock Hamiltonian are

F,=H, +> P [(u|Ao)—1/2(uv|A0)]  (3¢)
AC

and
0ocC

Puv = 22 C:icvi (37)
H, = I¢u (OH "9, (1, (38)
(wvl20)= [ (6,086, D, Q)d5dr, 6

The matrix of elements P L is the electron density matrix, H}lv are
the elements of the core Hamiltonian with respect to atomic orbitals,
and equation (39) is the general two- electron interaction integral over
atomic orbitals. Equation (35) is an algebraic equation in contrast with
the differential equation (24) previously derived.

The Roothan equation (35) can be written in matrix form as
FC=SCE (40)

Where E is the diagonal matrix of the &. The matrix elements of the
Hartree-Fock Hamiltonian operator F are dependent on the orbitals
through the elements P, and the Roothan equations are solved by first
assuming an initial set of linear expansion coefficients ¢ generating
the corresponding density matrix P and computing a first guess to F .

With the transformationsF =$"?FS™"?andC" =$"*C, equation(40)
can be made into an eigenvalue form or

FC=CE
The diagonalization procedure is affected by standard matrix
eigenvalue techniques, and new expansion coeflicients are calculated.

(40b)

The whole process is repeated until the coefficients no longer change
within a given tolerance on repeated iteration [2]. It is useful at this
point to summarize the hierarchy of approximations involved in
the SCF-MO model since we have now discussed all the necessary
approximations [8]:

(1) The first level of approximations corresponds to the non-
relativistic, fixed nucleus Schrodinger equation,

HY=E¥

(2) The variational solution of the Schrodinger Equation
corresponds to the best possible solution in the mean or integrated
value, the differential Schrodinger equation has point by point
solutions.

(3) The orbital model where the wave function W is expressed as the
product of the electron wave functions, equation (17) is an exact solution
of the Schrodinger equation when the interaction between particles is
neglected. Thus its use in the full Hamiltonian is an approximation that
does not fully take into account the correlated motion of the electrons
(physically this means interpreting the distribution of n electrons in
terms of the separate distributions of the model one-electron orbitals.
As the above analysis showed, a correlation term for electrons of
different spin is missing).

(4) By using a single configuration for the form of the wave
function ¥, equation (17), the exact form of the optimum total electron
wave function is lost here. A more exact solution is of the form where
the wave function is a liner superposition of all possible configurations
that are solutions to the Schrodinger equation with the same ground
energy E. Due to the approximate nature of the one-electron wave
functions that make-up ¥, the configurations differ in in the form of
the component electron wavefunction but the electron energies sum to
the same ground energy E.

¥=>CV¥

(5) With the LCAO approximation the exact form of optimum AO
is lost. The molecular orbitals are limited by the capabilities of the AO.

i—config

Semi-Empirical Methods

This method is part of the software package MOPAC or general-
purpose semi-empirical molecular orbital package developed through
the Quantum Chemistry Program Exchange at Indiana University.
As stated at the very outset, semi-empirical methods are considerable
less costly than ab-initio calculations in terms of computer resources
and can be applied to systems consisting of hundreds of atoms. In
semi-empirical methods the matrix elements of the Hartree-Fock
Hamiltonian or equation (24) are based on experimental data on
atoms and prototype molecular systems. It is important to note here
that by deriving the elements of the energy matrix semi-empirically,
semi-empirical guantum chemistry methods make some allowance
for electron correlation effects that are normally neglected in the M.O.
approach [9].

Tables 1a-1c on the pages that follow outlines the most important
semi-empirical Molecular Orbital (M.O.) methods. Historically, the first
M.O. semi-empirical method was Ruckel’s M.O. theory of n-electrons
where the molecular orbitals are a LCAO and solutions were seeked for
the Hamiltonian operator. The electrons were considered as moving
in the effective potential of the inner core-electrons. The overlap
integral on two different atoms M, N or S 'is the Kronecker delta. This
method was very important in that it showed rather quickly those M.O.
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methods that diagonilized energy matrices gave qualitatively important
results [4]. The next important development is the self-consistent field
(SCF)-M.O. theory of Pariser-Parr-Pople (PPP) as applied to a -
electron system or Zero-Differential Overlap (ZDO) where solutions
are sought for the Hartree-Fock equation (24). In the ZDO-SCF-M.O.
method, the only two electron two center repulsion integral retained
is-an integral of the type (up [AX), all others are neglected. Other
elements needed to complete the energy matrix diagonalization are
given by semi-empirical values. The next level of complexity is ZDO-
All Valence Electrons methods (Table 1b) where all valence electrons
are considered (and not just 7 electrons in a conjugated system such as
benzene) in the effective potential of the core composed of the nuclei
and inner electrons (the so called core approximation). As Tables 1b,1c
shows, semi-empirical methods CNDO, PNDO, INDO, MINDO, and
NDDO fall within the ZDO approximation.

The CNDO method makes the s-orbital approximation to retain
two-electron two center integrals of the type (uu|AX). Murrell states
[3]: “If the full SCF equations are solved without any approximations
then the calculated energies and electron distribution will be the
same whatever the choice of coordinate axes. In other words, it does
not matter how we choose to direct our angle-dependent orbitals
(p,d etc). The results must also be the same whether we choose to
take a linear combination of atomic orbitals or a linear combination
of hybridized orbitals which are themselves linear combinations of
atomic orbitals”. What this means is that the SCF calculations need
to be invariant to an orthogonal transformation of the atomic orbital
basis and approximations to the SCF equations may not satisfy the
conditions of rotational and hybridizational invariance. This problem
does not arise in n-electron theory as the molecular symmetry leads to

1. Huckel M.O. Theory of n-electrons (1930)

n-electrons (on different atoms as in benzene) move in the effective potential of the
o-framework.

MO. v, =2 ¢, 4, or LCAO

; are snluri:ms to Hy; = Eyy; where H is the Hamiltonian operator

Coulomb (y|ﬁ|,u] integrals and resonance integrals { #|Fﬂﬂ) empirically
determined.

§,.= Lﬁ_, (1)¢,()dz, =4, orbitals are on two different atoms M, N

§,,=0 for orbitals on the same atom due to orthonormality

2. SCF-M.O. Theory

MO. y, = 2,4, or LCAO
H
\y; are solutions to Fy; = E;y; where F is the Hartree-Fock operator

Two-electron integrals of Roothan equations evaluated per methods
outlined in this Table

(uvldo) = Hqé; (1)¢:(1)ri¢k(2)¢a(2)dr,dr, (general,two-electron integral, only
11

one or two centre integrals are considered)

2.1 ZDO ( Zero Differential Overlap) of x-electrons

nt-electrons on different atoms as in benzene
§,.=)¢,()¢,()dr, =5, orbitals are on two aitterent atoms M, N
§,. =0 for orbitals on the same atom due to orthonormality

Two-electron, two centre integrals retained are of the type ( ,uyij./l}
where the orbitals are on atoms M, N, and given semi-empirical values
all other two-electron repulsion integrals are taken to be zero. Other
integrals in Roothan eq also given semi-empirical values.

Table 1a: The Development of Semi-Empirical Quantum Chemistry Methods.

2.2 ZDO- All Valence Electrons Method

The core approximation is used: The valence electrons are assumed to
move in the field of a fixed core composed of the nuclei and inner shell
electrons.

S,.= j¢”(l)¢,(1)drl =&, orbitals are on two different atoms M, N
§,. =0 for orbitals on the same atom due to orthonormality

The two-electron interaction integrals (one or two centre) are
evaluated as described below. All other integrals in Roothan equations
are evaluated semi-empirically.

2.2.1 CNDO (Complete Neglect of Differential Overlap)

Due to invariance to rotations and hybridization use g-
orbital approximation to evaluate two-electron integrals
or

(upldd) =(s|s3) =71 twoatomsM, N

and (upldd) = {s”s:,) =¥ Same atom M
All other two-electron repulsion integrals are neglected.

One-centre integrals are evaluated semi-empirically
2.2.2 PNDO (Partial Neglect of Differential Overlap)

s-orbital approximation of CNDO no longer used.

(#plA%) on two atoms M, N given empirical values

same atom M integrals of the form ( uu|A4) or (ud|ud)
given an empirical value depending on electron spin

2.2.3 INDO (Intermediate Neglect of Differential Overlap)

uses s-orbital approximation as CNDO except that one-centre

Table 1b: The Development of Semi-empirical Methods.

a natural choice of axis for the 1 orbitals, or an axis perpendicular to the
molecular plane. Thus, in the CNDO method the invariance conditions
require that all two-center and one-center integrals be calculated using
the s-orbital approximation or

(Up | AL) = (sﬁ,I ER ) =7, TWoatoms M, N
Two atoms M, N (41) and s same atom M (42)
(up | AN) = (si,[ | si,[) =Yy Sameatom M

All other integrals necessary to diagonilize the energy matrix are
given semi-empirical values [3]. In the PNDO approximation, the
s-orbital approximation is abandoned with the two-centre two-electron
integrals given semi-empirical values. The most important feature of
the PNDO method is that the two-electron two-centre integrals are
evaluated only after transforming to a set of symmetry axis for the two
atoms involved in the integral. The INDO method retains the s-orbital
approximation for two-centre integrals except that one-centre two
electron integrals are given empirical values. The - MINDO method of
Baird and Dewar is based on INDO with some modifications and the
semi-empirical parameters were given values such as to get a best fit to
the experimental heats of formation of some chosen molecules. This
philosophy differs from that of the Pople School in which is tried to
reproduce the results of non-empirical SCF calculations using the same
set of atomic orbitals [3].

The NDDO method comes the closest to the full SCF equations
of Roothan and is therefore more difficult to apply than the previous
methods discussed in the NDDO method, in addition to retaining two-
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centre integrals of the type (up | A\.), the two-centre integral is retained.
The MNDO method of the MOPAC software (the method chosen for this
dissertation) falls within this level of approximation. AMI is the second
parametrization of the original MNDO, with PM3 being the third.

(Mg [N

To illustrate the MNDO Fock matrix elements, we will use the
notation of Dewar and Thiel [9]. The atomic orbitals (A.O) ¢ p and QV
are centered on atom A and AO. and goa at atom B. If necessary,
superscripts A or B will assign a particular symbol to atom A or B,
respectively. Thus, the MNDO Fock matrix elements are [9]:

A

=U,+ Z s+ P,

L, v =1/ 2(uv, uv)]+ ZZ L(uro)  (43)

B ko

Z s+ 21/ 2P BV, pv) — (u, v)l+ Y D P, (uv,ho)  (44)

A B
By~ 15 DD P, (v, ko) (45)

The Fock matrix terms of equations (43), (45) are as follows:

(a) One-center one-electron energies U, which represent the
sum of the kinetic energy of an electron in A.0. ¢ at atom A and its
potential energy due to the attraction by the core of atom A.

2.2 ZDO-All Valence-Electrons Methods (Cont'd.)
2.2.4 MINDO (Modified Intermediate Neglect of Differential Overlap)

Baird and Dewar modified INDO and choosed parameters
to best fit heats of formation of molecules in their ground
state. The one-centre two electron repulsion integrals are
given the values of the PNDO method (spin dependent).

225 NDDO (Neglect of diatomic differential Overlap)

In contrast to all the methods described above, in addition to
retaining two-centre two electron integrals of the type( HulAZ) the
two-centre integral ( ﬁ-‘uiul Hyd,) s retained, and as with other
integrals given semi-empirical values. The orbitals are on atoms
M, N in both integrals.

Two electron one-centre integrals are also given semi-empirical
values.

MNDO method of Dewar used in the MOPAC software

belongs to the NDDO level of approximation. AMI is the
second parametrization of the original MNDO, with PM3

hnfemm aba aklod

Table 1c: The Development of Semi-Empirical Methods.

Species ] Hf (Kcal/ Mol) Difference
Experiment PM3 MNDO AMI
Cyclopentadiene 32.10 -0.40 -0.08 4.90
Benzene 19.81 3.58 1.44 2.14
Naphthalene 36.05 4.51 2.15 4.42
Biphenyl 43.53 4.39 2.39 3.93
Anthracene 55.20 6.30 3.47 7.56

Table 2: Heats of Formation (MOPAC 93 Manual).

(b) One-center two-electron repulsion integrals
(up, o) and (L v, Ao)

(c) Two-center one-electron core resonance integral

ﬁuk = J.q)u (_%Vz +V,+V;p),dt (46)

where VA and VB are the effective potentials of the atom cores.

(d) Two-center one-electron attractions

5> between an electron
in the distribution ¢

¢V at atom A and the core of atom B.

(e) Two-center two-electron repulsion integrals

(up, Ao)and (uv,Ao)

In the MNDO method, the various Fock matrix elements are
determined either from experimental data or from semi-empirical
expressions which contain numerical atomic parameters that can be
adjusted to fit experimental data. The experimental data to be fitted
include heats of formation, geometrical variables (e.g., bond angle),
dipole moments, and first vertical ionization potentials for chosen
standard molecules. Atomic parameters were optimized for H, B, C,
N, 0, and F [9].

Table 2 depicts a comparison of MNDO with AMI and PM3
methods. As table shows, MNDO estimates of the heats of formation of
PAH (Polycyclic Aromatic Hydrocarbons) are superior to others. Zemer
[4] states that reaction barriers using. MNDO are generally too high,
whereas those obtained from AMI are in some instances considerably
better, although also often too high. To quote Dewar [10] “A major
problem in studying reactions by any current theoretical model is the
lack of experimental data for the intermediate sections of potential
surfaces and for the geometries of transition states. Calculations for
these consequently involve the extrapolation of an empirical procedure
into areas where it has not been, and indeed cannot be, tested. Such
an extrapolation is safer, the better the performance of the method in
question in all areas where it can be tested”.

Group Equivalent Corrections to MNDO

Group equivalent corrections were applied to semi-empirically
calculated heats of formation as demonstrated by Schulman et al., Peck
et al. [11,12] and more recently by Wang. The underlying principle of
the group equivalent correction is similar to that of Benson’s group
additivity method [13]. In Benson’s method, a molecule’s structural
group contributes a portion of the total property of the molecule,
while in the group equivalent corrections; it is assumed that this same
structural group contributes a given amount of error to the deviation
of the semi-empirically calculated heat of formation, for example,
from experimentally determined values. Thus according to the group
equivalent method, the heat of formation of a given molecule is
calculated from the following expression

n
AH; 505 = AH; 55 (S/E) - Z GE,
i=1
Where AH; 55 (S/E) s the semi-empirical heat of formation and
GE,; is the group equivalent correction assumed to be independent of
the overall structure of the molecule.

The group equivalent method will be illustrated for two molecules,
benzene and naphthalene. Benzene, according to Benson’s group
additivity method, consists of six Cs- (H) groups. The experimentally
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Figure 2: HF SCF Computation Procedure Flow Chart (Closed Shell) [14].
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determined heat of formation is 19.81 kcal/mol and from the MOPAC
93 MANUAL, the MNDO calculated heat of formation is 1.44 k cal/
mol higher than experimental. Thus, the GE correction for each group is

GE CB-H=144/6=0.24 kcal/mol

or a 0.24 kcal/mol correction for each CB-H group. With the
first GE correction determined, the next GE correction for a more
complex aromatic such as naphthalene can be evaluated. Naphthalene
consists of 8 CB-H groups and 2 CBF- (CB),(CBF) groups, with the
experimental value for the heat of formation as 36.05 kcal/mol and
the MNDO calculated value being 2.15 kcal/mol higher (MOPAC 93
MANUAL). The GE correction for the CBF- (CB),(CBF) group is the
calculated as follows or a 0.115 kcal/mol correction for each group. This
same procedure would be followed to determine the GE correction for
new groups in the next more complex PAH such as phenanthrene and
SO On.
2.15-8GE. | 2.15-8(0.24)

Cpr-(Cy)y (BF) — )

GE =0.115kcal/ mol

Computational Chemistry Software & Guides

Avery extensive compilation of Quantum Chemistry software can
be found in Wikipedia at:

https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_
solid-state_physics_software

Software is available to conduct semi-empirical, ab-initio (HF
SCF, post HF), density functional theory, molecular mechanics
calculations. The author is most familiar with MOPAC for semi-
empirical calculations and Spartan for ab-initio computations.

There are a good number of books or guides to Computational
Quantum Chemistry that are most popular. These are the following:

a. Introduction to Computational Chemistry, Jensen, Frank, 2007

b. Molecular Modeling Principles and Aplications, Bleach, Andrew R,
2001

¢. Understanding Molecular Simulations, Frenkel D, Smit B 2002

d. Essentials of Computational Chemistry, Cramer, Christopher J
2004

e. Computational Chemistry: A Practical Guide for Applying
Techniques to Real World problems, Young, David C 2001.
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