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ABSTRACT

The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has emerged as an unparalleled global public health 
crisis. Despite extensive research efforts, the precise etiology of this disease remains enigmatic. In this study, we employ 
in-silico methods to analyze publicly available gene expression datasets from the Gene Expression Omnibus (GEO), 
aiming to uncover the underlying molecular mechanisms. Gene expression datasets were retrieved from GEO and 
differential gene expression patterns were identified using the GEO 2R pipeline. Subsequent analyses included the 
generation of heatmaps, Principal Component Analysis (PCA), construction of Protein-Protein Interaction (PPIs) 
networks and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway predictions through network analyst 
and Database for Annotation, Visualization and Integrated Discovery (DAVID). We also examined key hub genes, 
micro Ribonucleic Acids (miRNA) targets and potential drug targets to elucidate the molecular intricacies involved. 
Our analysis revealed pivotal hub genes, such as Von Willebrand Factor (VWF), Tumor Necrosis Factor (TNF), 
E2F 1, Interleukin 1β (IL1β), Interleukin 10 (IL 10), Interleukin-12A (IL-12A), Integrin subunit Beta-5 (ITGβ-5), 
Elastase, Neutrophil Expressed (ELANE) and Polo-Like Kinase 1 (PLK 1), alongside significant miRNAs like hsa-
mir193b-3p, hsa-mir-92a-3p, hsa-mir-16-5p, hsa-mir-1925p, hsa-let-7b-5p, hsa-mir26a-5p, hsa-mir1865p, hsa-mir243a-
5p and hsa-mir-34a-5p. Pathways linked to inflammation, including neutrophil extracellular trap formation, systemic 
lupus erythematous, complement and coagulation cascades and the Coronavirus Disease-19 (COVID-19) pathway, 
played crucial roles in COVID-19 pathogenesis. Additionally, these identified genes and microRNAs hold promise 
as potential drug targets and biomarkers. In summary, this research offers valuable insights into the pathways, 
biomarkers, including gene targets and microRNA targets, as well as potential drug targets associated with the 
inflammatory and coagulation aspects of COVID-19. These discoveries enhance our understanding of the disease's 
molecular intricacies and open doors to the development of precisely targeted therapeutic interventions.
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INTRODUCTION

The global impact of the Severe Acute Respiratory Syndrome-
Coronavirus-2 (SARS-CoV-2), responsible for the Coronavirus 
Disease-2019 (COVID-19) pandemic, cannot be overstated. 
Emerging from Wuhan, China, three years ago, this highly 
contagious virus has posed a profound and ongoing public health 
challenge [1-3]. It manifests through a diverse array of symptoms, 
including cough, fever, myalgias, headache, loss of smell, pain and 
skin rashes. 

Left untreated, these symptoms can escalate to life-threatening 
conditions such as septic shock, respiratory failure, multi-organ 
failure and regrettably, fatality. Strikingly, the duration of these 

symptoms exhibits wide variability, ranging from a relatively brief 
10-15 days to persistent affliction spanning months [4-6]. As of 
25 October, 2023, a staggering 696,939,069 cases have been 
documented globally, with 6,931,480 lives tragically lost [7].

SARS-CoV-2's primary targets within the human body include lung 
cells, olfactory epithelial cells, vascular cells and intestinal cells. 
Infection by this virus triggers intricate immunological responses, 
often resulting in cellular damage [8]. However, the precise 
mechanisms governing these processes remain elusive, representing 
a critical knowledge gap in our understanding of COVID-19.

With the advent of the modern era, bioinformatics has emerged 
as a vital component of comprehension [9]. By providing access 
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to an extensive array of web-based tools, databases and expansive 
datasets, bioinformatics has democratized access to critical research 
resources. Leveraging publicly available datasets, this endeavor 
aspires to contribute significantly to our elucidation of the intricate 
molecular underpinnings of SARS-CoV-2 infection, thereby 
offering potential avenues for the development of more efficacious 
therapeutic interventions [4,10-12]. The present study is dedicated 
to harnessing these resources to conduct an in-silico analysis, with 
the primary objectives of scrutinizing genes, Ribonucleic Acid 
(RNA) targets, pathways and the identification of novel drug targets 
as shown in schematic workflow (Figure 1).

Figure 1: Illustration depicting the workflow for in-silico data 
analysis of COVID-19 datasets. Note: RNA seq: Ribonucleic Acid 
Sequencing; GEO: Gene Expression Omnibus; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; GO: Gene Ontology; PPI: 
Protein-Protein Interaction; miRNA: MicroRNA; ROC: Receiver 
Operating Characteristic.

MATERIALS AND METHODS

Dataset selection 

We accessed publicly available datasets, namely GSE 157103 and 
GSE 152418, from the Gene Expression Omnibus (GEO) [12,13]. 
Differential gene expression analysis was performed using GEO 2R 
with Differential Expression analysis (DESeq) which works on R 
package [14]. Differentially Expressed Genes (DEGs) were defined 
based on a fold change of 1.0 or greater and a p-value threshold 
of less than 0.05. Additionally, we conducted heat map and PCA 
using Integrated Differential Expression and Pathway analysis 
(IDEP) for exploratory data visualization [15,16] (Table 1).

KEGG pathway enrichment analysis 

To gain insights into the biological processes associated with hub 
genes, we performed KEGG pathway enrichment analysis using 
DAVID 2.0 [17,18]. This analysis encompassed molecular, cellular 
and biological processes, with a focus on pathways exhibiting 
adjusted p-values below 0.05. The bubble plot was plotted with the 
help of SR Plot Bio-info online software [19].

Protein-Protein Interaction (PPI) network construction 

To elucidate potential interactions among the identified genes, 
we constructed a PPI network of list of combined proteins from 
both the datasets. The duplicates proteins were also removed. 
This network was created using network analyst 3.0 drawing on 
literature-curated databases [20].

miRNA target gene analysis 

We identified miRNAs associated with hub genes and constructed 
miRNA-target gene interaction networks. This analysis was 
conducted using network analyst 3.0 enhancing our understanding 
of potential regulatory mechanisms [20].

Drug-gene interaction database 

To identify potential therapeutic avenues, we evaluated drug-
target interactions related to hub genes. This analysis relied on a 
drug target interaction database, shedding light on potential drug 
candidates for further investigation [21].

Expression analysis of inflammation and coagulation 
genes 

Expression patterns of inflammation and coagulation related 
genes were explored by generating heat maps in each dataset using 
IDEP. Receiver Operating Characteristic (ROC) analysis was also 
conducted to assess the diagnostic potential of important genes.

Statistical analysis 

We carried DEG analysis of GSE 152418 and GSE 157103 datasets 
with the help of GEO 2R which uses DESeq which works on R 
package and DEG genes with Benjamini-Hochberg method with 
adjust P-value<0.05-fold change ± 1, were considered as significant 
[14]. For Gene Ontology (GO) and KEGG pathways with 
FDR<0.05 considered as significantly enriched pathways and terms. 
Correlation matrix plot uses pearson's correlation coefficient. In 
heat map the genes are clustered on the basis of average linkage, 
euclidean distance with the help of IDEP software [15,16].

RESULTS 

Dataset analysis and DEG identification

We have analyzed datasets GSE 152418 and GSE 157103 through 
GEOR and IDEP which uses differential gene expression analysis 
based on the negative binomial distribution DESeq 2 which works 
on R package fold change ± 1, P-value<0.05 in dataset GSE 157103, 
we found 1315 significantly differently expressed genes (Figures 2A-
2F). PCA plot is used to visualize characteristics of RNA sequence 
data, the data of COVID patients shown in red are clustered in 
lower right side of the axis (Figure 2B). The heat map of 10,000 genes 
which are differently expressed clustered together based on average 
linkage for hierarchical clustering in dataset have been shown 
(Figure 2E). The red color showed upregulated gene expression 
while green color shows that gene expression is downregulated. 
The correlation matrix illustrated person's correlation coefficient, red 
color which means strong correlation between samples whereas 
green showed weak correlation. The samples are placed in similar 
order both vertically and horizontally (Figure 2D). The quality of 
RNA samples was good and similar in both the group as shown in 
(Figure 2F).
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Table 1: Dataset details used in the study.

S.no. GEO ID series Tissue type
Case-control 

group
Experiment 

Type
Platform Journal Year

1 GSE15710 3
Leukocytes from 

whole blood
100 COVID- 26 

control

Expression 
profiling by high 

throughput
GPL24676

Cell Syst 2021 
Ref 12

Aug-20

2 GSE15241 8 PBMC 17 COVID- 19

Expression 
profiling by 

high throughput 
sequencing

GPL24676
Science 2020 

Ref 13
20-Jul

Note: GEO: Gene Expression Omnibus; PBMC: Peripheral Blood Mononuclear Cells.

Figure 2: (A): Volcano plot displaying the distribution of Differentially Expressed Genes (DEGs); (B): Principal Component Analysis (PCA) score 
plot providing an overview of data distribution; (C): Heat map illustrating gene expression patterns; (D): Correlation matrix depicting the strength 
and direction of gene correlations; (E): Venn diagram showing number of significantly differently expressed genes adjusted P<0.05, identified through 
Differential Gene Expression Analysis (DESeq2) in dataset GSE 157103; (F): Normalized count visualization. In the heat map and correlation matrix, 
green colour indicates lower expression levels and weak correlations, while red colour signifies strong positive expression and correlations. Note: (A): 
( ): Down (adjusted P<0.05); ( ): Up (adjusted P<0.05); (B): ( ): Covid sample; ( ): Non-covid sample; (C): ( ): Control sample; ( ): Non-covid 
sample; (F): ( ): Control; ( ): Covid-19.

B

D E

F

A C
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KEGG pathway and go analysis 

In dataset 152418 the enriched KEGG pathway adjust P<0.05 
are; neutrophil extracellular trap formation, systemic lupus 
erythematous, cell cycle, complement and cascades, tumor 
suppressor signaling p53 pathway, anti-folate resistance, 
dilated cardiomyopathy, Extracellular Matrix (ECM)-receptor 
interaction. The major biological function is adaptive immune 
response, immunoglobulin production, immune response, 
complement activation-classical pathway, phagocytosis- engulfment, 
immunoglobulin mediated immune response, Deoxyribonucleic Acid 
(DNA) replication, positive regulation of endothelial cell proliferation. 
The molecular functions are; DNA binding, antigen binding, 
peroxidase activity, protein hetero-dimerization activity, microtubule 
binding, oxygen transporter activity, haptoglobin binding. The major 
cellular components are; plasma membrane, extracellular region, 
extracellular space, immunoglobulin complex, platelet alpha granule 
lumen, hemoglobin complex, haptoglobin-hemolobin complex, 
Immunoglobulin G (IgG) complex, Immunoglobulin M (IgM) 
complex, Immunoglobulin A (IgG) complex (Figures 4A-4D).

We have analyzed datasets GSE 152418 through GEOR and IDEP 
which uses DESeq 2 which works on R package fold change ± 1, 
P-value<0.05 in dataset GSE 152418, we found 1120 significantly 
differently expressed genes (Figures 3A-3F). PCA plot is used to 
visualize characteristics of RNA sequence data, all data of COVID 
and healthy patients are grouped in two different clusters (Figure 
3B). 

The control samples mainly clustered in left side while COVID 
patients’ samples are clustered on right side of the axis; The heat map 
of 10,000 genes which are differently expressed clustered together 
based on average linkage for hierarchical clustering in dataset 
have been shown (Figure 3C). The red color showed upregulated 
gene expression while green color shows that gene expression 
is downregulated The correlation matrix illustrated pearson's 
correlation coefficient, red color which means strong correlation 
between samples whereas green showed weak correlation. The 
samples are placed in similar order for both vertically and 
horizontally (Figure 3D). The quality of RNA samples in the form 
of normalized courts was good and similar in both the group as 
shown in (Figure 3F).

Figure 3: (A): Volcano plot showcasing Differentially Expressed Genes (DEGs); (B): Principal Component Analysis (PCA) score plot offering insights 
into data distribution; (C): Heat map presenting gene expression patterns; (D): Correlation matrix elucidating the strength and direction of gene 
correlations; (E): Venn diagram showing number of significantly differently expressed genes adjusted P<0.05, identified through Differential Gene 
Expression Analysis (DESeq2) in dataset GSE 152418; (F): Normalized count visualization. In the heat map and correlation matrix, green colour 
represents lower expression levels and weak correlations, whereas red colour indicates strong positive expression and correlations. Note: (A): ( ): 
Down (adjusted P<0.05); ( ): Up (adjusted P<0.05); (B): ( ): Control sample; ( ): Covid sample; (C): ( ): Control sample; ( ): Covid sample; (F): 
( ): Healthy; ( ): Covid-19.

B

D E

F
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Figure 4: In dataset GSE 152418; (A): Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, where bubble size 
corresponds to the number of genes. Gene ontology enrichment analysis encompassing; (B): Biological functions; (C): Molecular functions; (D): 
Cellular components. Note: In all cases, bubble size denotes the number of genes and bubble colour represents the negative logarithm of adjusted 
p-values (-log adjusted P); (A): Count: ( ): 10; ( ): 20; ( ): 30; ( ): 40; (B): Count: ( ): 50; ( ): 100; (C): Count: ( ): 25; ( ): 50; ( ): 75; (D): 
Count: ( ): 100; ( ): 200; ( ): 300.

A

C D

B

PPI network formation

The significantly expressed genes from both the datasets were 
combined together and duplicates genes were removed. The genes 
were subjected to form PPI network. The network has 476 nodes 
and 915 edges (Figure 5). The degree ranges from 38 to 1 and 
betweeness ranges from 16451 to 0 (Table 2). 

The important genes which are crucial role in inflammation and 
coagulation are; Cyclin-Dependent Kinase-1 (CDK-1), PLK 1, E2F 
1, Minichromosome Maintenance Complex component (MCM6), 
MCM2, Cell Division Cycle 6 (CDC 6), Ribosomal Proteins 
S19 (RPS19), TNF, VWF, Interleukin 12A (IL12A), Ribosomal 
Proteins-L8 (RP-L8), Cluster of Differentiation-34 (CD-34), 
Myeloperoxidase (MPO), IL10, IL1B, etc. (Figure 6).

Gene-miRNA network analysis

Gene-MiRNA network has 126 nodes and 331 edges (Figure 7). 
The hub miRNAs are; hsa-mir193b-3p, hsa-mir-92a-3p, hsa-mir-16-
5p, hsa-mir-1925p, hsa-let-7b-5p, hsa-mir26a-5p, hsa-mir1865p, hsa-
mir243a-5p and hsa-mir-34a-5p (Table 3).

In dataset 157103 the enriched KEGG pathway, adjust P<0.05 
are; cell cycle, COVID-19, motor proteins, ribosome, neutrophil 
extracellular trap formation. Enriched biological function were; 
adaptive immune response, immunoglobulin production, immune 
response, complement activation-classical pathway, phagocytosis-
engulfment, immunoglobulin mediated immune response, DNA 
replication, positive regulation of endothelial cell proliferation, B 
cell receptor signaling pathway, defense response to virus, response to 
virus, negative regulation of viral genome, chromosome segregation, 
innate immune response to mucosa, mitotic spindle organization, 
mitotic sister chromatid segregation, mitotic spindle check point. 
The molecular function was; Adenosine Triphosphate (ATP) 
binding, immunoglobulin-receptor binding, microtubule motor 
activity. The major cellular components are; plasma membrane, 
extracellular region, extracellular space, immunoglobulin complex, 
platelet alpha granule lumen, hemoglobin complex, haptoglobin-
hemolobin complex, IgG immunoglobulin complex, IgM 
immunoglobulin complex, IgA immunoglobulin complex, mid-
body, blood micro-particle, spindle, mitotic spindle. Specific 
granule lumen, Immunoglobulin D (IgD) complex, kinectochore, 
external side of plasma membrane (Figures 5A-5D).
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Figure 5: In dataset GSE 157103; (A): Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, where bubble size 
corresponds to the number of genes. Gene ontology enrichment analysis encompassing; (B): Biological functions; (C): Molecular functions; (D): 
Cellular components. Note: In all cases, bubble size denotes the number of genes and bubble colour represents the negative logarithm of adjusted 
p-values (-log adjusted P); (A): Count: ( ): 20; ( ): 25; ( ): 30; ( ): 35; (B): Count: ( ): 50; ( ): 100; ( ): 150; (C): Count: ( ): 25; ( ): 50; ( ): 
75; ( ): 100; (D): Count: ( ): 100; ( ): 200; ( ): 300.

A

C D

B

Label Degree Betweenness

Cyclin-Dependent Kinase 1 ( CDK1) 38 16451.79

Polo-Like Kinase 1 (PLK1) 25 7026.08

E2F Transcription Factor 1 (E2F1) 24 8839.72

Cell Division Cycle Protein 20 (CDC20) 22 4203.84

Aurora kinase B (AURKB) 19 4445.41

Cyclin B1 (CCNB1) 19 2657

Interferon-Stimulated Gene 15 (ISG15) 18 8456.9

Cyclin A2 (CCNA2) 17 3406.49

Minichromosome Maintenance Complex Component 6 (MCM6) 16 1938.23

Minichromosome Maintenance Complex Component 2 (MCM2) 15 5542.74

Cell Division Cycle 6 (CDC6) 15 1155.15

Cyclin A1 (CCNA1) 14 2353.25

Chromatin licensing and DNA replication factor 1 (CDT1) 14 722.44

Table 2: Topological properties of important genes which are playing crucial role in inflammation and coagulation in the Protein-Protein Interaction 
(PPI) network.
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BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) 13 1019.79

Ribosomal Protein S2 (RPS2) 12 861.02

Elastase, Neutrophil Expressed (ELANE) 11 7037.99

Budding Uninhibited by Benzimidazole 1 (BUB1) 11 1214.7

Cyclin E1 (CCNE1) 11 459.55

Origin Recognition Complex Subunit 1 (ORC1) 11 251.3

Cell Division Cycle Protein 45 (CDC45) 9 1840.14

Ribosomal Protein S19 (RPS19) 9 632.29

Ribosomal Protein L36 (RPL36) 8 129.54

Ribosomal Protein S15 (RPS15) 8 121.9

Cell Division Cycle 7 (CDC7) 8 64.72

Minichromosome Maintenance Complex Component 4 (MCM4) 8 49.59

Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2 (EIF2AK2) 7 1704.81

Ribosomal Protein Lateral Stalk Subunit P1 (RPLP1) 7 420.59

Checkpoint Kinase 1 (CHEK1) 7 230.32

Origin Recognition Complex Subunit 6 (ORC6) 7 12.06

Ribosomal Protein S28 (RPS28) 7 2.15

Hemoglobin Subunit Alpha 1 (HBA1) 6 2092.73

Cell Division Cycle 25 A (CDC25A) 6 517.18

Ribosomal Protein L18a (RPL18A) 6 475.12

MAD2 Mitotic Arrest Deficient-Like 1 (MAD2L1) 6 243.73

Ribosomal Protein L13 (RPL13) 6 238.79

Ribosomal Protein Lateral Stalk Subunit P2 (RPLP2) 6 118.77

Thyroid Receptor-Interacting Protein 13 (TRIP13) 5 2359

Complement C1q Subcomponent Subunit A (C1QA) 5 1520.72

Tumor Necrosis Factor (TNF) 5 1153.37

F-Box Protein 5 (FBXO5) 5 106.44

Ribosomal Protein L8 (RPL8) 5 105.47

Cyclin-Dependent Kinase Inhibitor 2A (CDKN1C) 4 745.13

Pituitary Tumor Transforming Gene 1 (PTTG1) 4 476.8

Complement C1q C Chain (C1QC) 4 107.07

Ribosomal Protein L35 (RPL35) 4 73.84

Cyclic Adenosine Monophosphate (CAMP) 3 774.98

MX Dynamin Like GTPase 1 (MX1) 3 545.46

Serine/Threonine Kinase (WEE1) 3 512.12

Threonine Tyrosine Kinase (TTK) 3 34.99

Azurocidin 1 (AZU1) 2 946

Mitogen-Activated Protein Kinase 11 (MAPK11) 2 474

Integrin Subunit Alpha 2b (ITGA2B) 2 474

Interleukin 12A (IL12A) 2 474

Von Willebrand factor (VWF) 2 461.15
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Figure 6: Protein-Protein Interaction (PPI) network visualizing common genes shared between the two datasets.

Figure 7: Network diagram illustrating interactions between micro Ribonucleic Acids (miRNAs) and hub genes.
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Table 3: Topological properties of hub genes and micro Ribonucleic Acids (miRNAs) targets the Protein-Protein Interaction (PPI) network.

Label Degree Betweenness

Serine/Threonine Kinase (WEE1) 18 848.71

hsa-mir-193b-3p 16 822.41

hsa-mir-92a-3p 15 775.73

Origin Recognition Complex Subunit 1 (ORC1) 13 617.12

Ribosomal Protein Lateral Stalk Subunit P1 (RPLP1) 12 622.47

Cyclin A2 (CCNA2) 12 570.23

hsa-mir-16-5p 12 461.82

Ribosomal Protein S2 (RPS2) 12 458.63

E2F Transcription Factor 1 (E2F1) 12 420.89

Checkpoint Kinase 1 (CHEK1) 12 384.38

Ribosomal Protein L18a (RPL18A) 11 393.15

Cyclin B1 (CCNB1) 11 370.25

Cyclin E1 (CCNE1) 11 329.58

hsa-mir-192-5p 11 326.48

Cell Division Cycle 25 A (CDC25A) 11 303.61

Polo-Like Kinase 1 (PLK1) 10 344.57

Origin Recognition Complex Subunit 6 (ORC6) 1 343.24

Ribosomal Protein S19 (RPS19) 10 228.41

hsa-let-7b-5p 9 402.84

Budding Uninhibited by Benzimidazole 1 (BUB1) 9 348.35

Cell Division Cycle 6 (CDC6) 9 319.2

Aurora kinase B (AURKB) 9 307.1

hsa-mir-26a-5p 9 219.13

hsa-mir-186-5p 8 280.29

hsa-mir-24-3p 8 216.9

hsa-mir-34a-5p 8 195.96

Minichromosome Maintenance Complex Component 4 (MCM4) 8 176.6

Ribosomal Protein L36 (RPL36) 8 131.66

hsa-mir-124-3p 7 324.46

Ribosomal Protein L8 (RPL8) 7 245.79

hsa-mir-615-3p 7 167.02

Ribosomal Protein S28 (RPS28) 7 163.31

hsa-mir-26b-5p 7 153.75

Cyclin-Dependent Kinase 1 (CDK1) 7 140.94

Tumor Necrosis Factor (TNF) 7 138.87

hsa-mir-15b-5p 7 124.88

hsa-mir-92b-3p 6 179.43

hsa-mir-1-3p 6 173.37

hsa-mir-766-3p 6 149.1

Cell Division Cycle Protein 20 (CDC20) 6 143.46

hsa-mir-320a 6 135.13

Ribosomal Protein S15 (RPS15) 6 125.44

hsa-mir-484 6 112.53

Minichromosome Maintenance Complex Component 2 (MCM2) 6 100.22

Ribosomal Protein L35 (RPL35) 6 87.92

hsa-mir-15a-5p 6 54.02

hsa-mir-455-3p 5 146.45

hsa-mir-10a-5p 5 131.43

Cyclin-Dependent Kinase Inhibitor 2A (CDKN1C) 5 128.97

Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2 (EIF2AK2) 5 116.67

Minichromosome Maintenance Complex Component 6 (MCM6) 5 92.98

Cell Division Cycle 7 (CDC7) 5 92.94

hsa-mir-20a-5p 5 89.75

hsa-mir-4252 5 77.11
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Drug gene interaction

With the help of drug gene interaction databases, we found drugs 
for various DEG; E2F1 has bortezoimb, flurouracil, etoposide, 
methotrexate, cisplatin, irinotecan. TNF has hydroxychloroqine, 

thalidomide, gemcitabine, carboplatin, lenalidomide, sorafenib. 
VWF has mitomycin, prednisone, streptozoin, thalidomide, 
vincristine. Mitogen-Activated Protein Kinase 11 (MAPK11) has 
sorafenib and pirfenidone. These drugs serve as a crucial role in 
treating pathogenesis of COVID-19 (Table 4).

Search term Match term Gene Drug Interaction-types Sources PubMed Identifier (PMIDS)

E2F1 E2F1 E2F1 Bortezomib NCI 11489836

E2F1 E2F1 E2F1 Fluorouracil NCI 9766655

E2F1 E2F1 E2F1 Carmustine NCI 11445852

E2F1 E2F1 E2F1 Etoposide NCI 9766655|16849574

E2F1 E2F1 E2F1 Methotrexate NCI 14654896

E2F1 E2F1 E2F1 Irinotecan NCI 9766655

E2F1 E2F1 E2F1 Paclitaxel NCI 16849574

E2F1 E2F1 E2F1 Cisplatin NCI 16849574

AURKB AURKB AURKB Sorafenib DTC -

AURKB AURKB AURKB Dasatinib DTC -

AURKB AURKB AURKB Pazopanib DTC -

ISG15 ISG15 ISG15 Irinotecan Inhibitor MyCancerGenomeClinicalTrial

CCNE1 CCNE1 CCNE1 Palbociclib CIViC 25557169|27020857|30807234

RPS19 RPS19 RPS19 Dexamethasone NCI 15755903

CHEK1 CHEK1 CHEK1 Olaparib CIViC 28490518

CHEK1 CHEK1 CHEK1 Cisplatin CIViC 28490518

CHEK1 CHEK1 CHEK1 Gemcitabine NCI 17245119

CHEK1 CHEK1 CHEK1 Etoposide DTC 22364746

CHEK1 CHEK1 CHEK1 Palbociclib DTC  -

RPL13 RPL13 RPL13 Thalidomide PharmGKB 20038957

RPL13 RPL13 RPL13 Docetaxel PharmGKB 20038957

TNF TNF TNF Hydroxychloroquine NCI 9002011

TNF TNF TNF Gemcitabine PharmGKB 31616045

TNF TNF TNF Thalidomide Inhibitor TdgClinicalTrial|TEND|TTD
8755512|12046682|12167383|
12105857|12102294|11752352

|12113124

TNF TNF TNF Lenalidomide ClearityFoundationClinicalTrial|TTD

TNF TNF TNF Sorafenib PharmGKB 22736425

TNF TNF TNF Carboplatin PharmGKB 31616045

WEE1 WEE1 WEE1 Gemcitabine CIViC 26057002

MAPK11 MAPK11 MAPK11 Sorafenib PharmGKB 20124951

MAPK MAPK11 MAPK11 Pirfenidone TdgClinicalTrial

VWF VWF VWF Mitomycin NCI 2104558

VWF VWF VWF Prednisone NCI 3146197

VWF VWF VWF Streptozocin NCI 16422885|3928783

VWF VWF VWF Thalidomide NCI 12871448

VWF VWF VWF Vincristine NCI 3875694

Note: E2F1: E2F Transcription Factor 1; AURKB: Aurora kinase B; ISG15: Interferon-Stimulated Gene 15; CCNE1: Cyclin E1; RPS19: Ribosomal 
Protein S19; CHEK1: Checkpoint Kinase 1; RPL13: Ribosomal Protein L13; TNF: Tumor Necrosis Factor; WEE1: Serine/Threonine Kinase; MAPK11: 
Mitogen-Activated Protein Kinase 11; VWF: Von Willebrand factor; NCI: National Cancer Institute; DTC: Direct to Consumer; CIViC: Clinical 
Interpretation of Variants in Cancer; PharmGKB: Pharmacogenomics Knowledge Base; TTD: Time to Treatment Discontinuation.

Table 4: Important genes and their drug targets.
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and coagulation in both the datasets i.e. GSE 157103 and 152418. 
The expression of these genes are VWF, TNF, CD34, IL10, IL12A, 
MPO, RPL8, RPL35 has been shown in (Figures 8A and 8B). In 
ROC, Area Under the Curve (AUC) value of VWF, TNF, IL-1B, 
CD34 is 0.703, 0.781, 0.721, 0.073 respectively (Figures 9A-9D). 
This AUC value suggesting that these molecules could be serving 
as a potential biomarker in COVID-19.

Expression and ROC analysis of genes related to 
inflammation and coagulation 

From KEGG pathways and GO analysis of both datasets, we found 
inflammation and coagulation pathways plays an important role 
in the pathogenesis of COVID-19. We constructed the heat map 
of those genes which are responsible for inflammation pathways 

Figure 8: Heat map of inflammatory and coagulation related genes in the datasets; (A): GSE152418; (B): GSE157103. Note: (A): ( ): Control; 
( ): Covid; (B): ( ): Covid; ( ): Non-covid.

A B

Figure 9: Receiver Operating Characteristic (ROC) curve analysis of potential coagulation inflammatory biomarkers. (A): Von Willebrand 
Factor (VWF); (B): Tumor Necrosis Factor (TNF); (C): Interleukin 1β (IL1β); (D): Cluster of Differentiation (CD34).

A

C

B

D
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92a-3p, hsa-mir-16-5p, hsa-mir-1925p, hsa-mir26a-5p, hsa-mir243a-
5p and hsa-mir-34a-5p in COVID-19's molecular landscape. These 
findings offer promise for precision medicine in combatting the 
pandemic. We emphasize the need for multidisciplinary approaches 
in understanding complex diseases. As COVID-19 evolves, our 
research contributes to global efforts to mitigate its impact and 
guide future therapeutic strategies, marking a crucial step forward 
in the battle against this unprecedented public health challenge.
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