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Commentary
Living organisms have a magnificent ordered and complex 

structure. In regulating the cellular functions, post-translational 
modifications (PTMs) are critical molecular measures. They alter 
protein conformation, modulating their activity, stability and 
localization. Up to date, more than 300 types of PTMs are experimentally 
discovered in vivo and in vitro pathways [1,2]. Major and common 
PTMs are methylation, ubiquitination, succinylation, phosphorylation, 
glycosylation, acetylation, and sumoylation.

PTM is a biological mechanism common to both prokaryotic and 
eukaryotic organisms, which controls the protein functions and stability 
or the proteolytic cleavage of regulatory subunits and affects all aspects 
of cellular life. The PTM of a protein can also determine the cell signaling 
state, turnover, localization, and interactions with other proteins [3]. 
Therefore, the analysis of proteins and their PTMs are particularly 
important for the study of heart disease, cancer, neurodegenerative 
diseases and diabetes [4,5]. Since the characterization of PTMs gets 
invaluable insight into the cellular functions in etiological processes, 
there are still challenges. Specifically, the major challenges in studying 
PTMs are the development of specific detection and purification 
methods.

The PTMs are categorized into several axes. The first one is grouped 
by the residue side-chains of modification sites. In this category, 
almost 15 of the 20 types of amino acid side-chains can undergo the 
modifications (Table 1) [6,7]. The second one is a fragment of coenzyme 
or co-substrate coupled to the protein and concomitant modification 
by chemical nature, including S-adenosylmethionine dependent 
methylation, acetyl CoA dependent acetylation, NAD-dependent ADP 
ribosylation, CoASH-dependent phosphopantetheinylation, ATP-
dependent phosphorylation, and phosphoadenosinephosphosulfate 
(PAPS) -dependent sulfurylation. The third categorization of PTM 
is grouped by the hydrophobic residues for membrane localization. 
It has acquired various lipid modifications [prenylation, glycosyl 
phosphatidylinositol (GPI), palmitoylation anchor attachment, 
glypiation, farnesylation, geranylgeranylation]. However, many PTMs 
have biased and overlapped with the arrangement of other PTMs in 
surrounding amino acid sequences. This tendency is often embodied 
within a sequence motif. For example, it has been observed that 
nearly 60% class PTMs of protein succinylation sites are surrounded 
or overlapped with protein acetylation sites [8]. These PTMs can also 
affect the physicochemical properties of proteins, which can provide 
a mechanism for the dynamic regulation of molecular, self-assembly 
[9]. The PTMs have been found in the all types of proteins such as 
the structural proteins, plasma membrane receptors and nuclear 
transcription factors (Figure 1).

Lysine is one of the most frequently occurred PTM sites, which 
has important regulatory and functional consequences. In 1964, 
Allfrey et al. [10] observed that the gene expression can be regulated 
by covalently introducing methyl and acetyl groups on lysine residues 
in histones. Recently, some studies have discovered that lysine acts as a 

hot spot for PTMs, and a number of protein lysine modifications could 
occur in both histone and non-histone proteins [11,12]. For instance, 
lysine methylation in non-histone proteins can regulate the protein 
activity and protein structure stability [13]. In 2004, the Nobel Prize in 
Chemistry was awarded jointly to Aaron Ciechanover, Avram Hershko 
and Irwin Rose for the discovery of lysine ubiquitin-mediated protein 
degradation [14]. 

Moreover, in biological process, lysine can be modified by the 
primary glycolytic intermediate 1,3-biophosphoglycerate (1,3-BPG) 
through 3-phosphoglyceryl-lysine protein [15], whereas in glycolytic 
processes lysine glycation is involved [16]. A rapid progress in 
proteomic technologies have greatly accelerated the identification of 
lysine modifications proteins and the discovery of new lysine PTMs 
[11,12,17,18]. Therefore, it is urgently needed to know the function of 
these lysine PTMs, since the number of lysine PTMs have been greatly 
expanded to the research community. Moreover, it is also essential to 
create lysine PTM databases for researchers to store, query and manage 
the lysine PTM data.

Computational prediction of lysine PTM sites

Some kinds of PTMs, such as succinylation, ubiquitination, 
acylation, methylation, sumoylation and deamination, occurred on 
lysine residues. For the last several decades remarkable progresses 
have been carried in the identification and functional analysis of lysine 
PTMs in proteins. Lysine PTMs play a vital role in protein folding, 
protein function, and interactions with other proteins [19,20]. Due to 
the important biological functions of protein lysine PTMs, it is very 
important to analyze and understand the function of lysine PTMs.

The lysine PTMs of proteins have been identified by a variety 
of experimental techniques including the mass spectrometry 
(MS) [21,22], chromatin immunoprecipitation (ChIP)[23], liquid 
chromatography [24], radioactive chemical method [25], western 
blotting [26], and eastern blotting [24]. The MS technique is one of the 
mainstay routes in detecting PTMs in a high-throughput manner. The 
new MS and capillary liquid chromatography instrumentation have 
made revolutionary advance in enrichment strategies in our growing 
understanding of many PTMs [27]. A similar strategy of fragmentation 
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for PTM identification is the beam-type collision induced dissociation, 
also called higher energy collisional dissociation [28]. These types of 
fragmentation are characterized by higher activation energy. Most of 
the fragmentation methods of precursor ions are based on the radical 
anions or thermal electrons [29]. In general, the experimental analysis of 
PTMs often requires labor intensive sample preparations and hazardous 
or expensive chemical reagents. The substrate is separated from non-
radioactive ATP by the kinase assay and generates radioactive waste. 
Since most of the radioactive substances show a short half-life, the fresh 
reagent must be frequently acquired. And sometimes, the substrate 
concentration of assay is often much higher than the expected substrate 
concentrations [30]. In the above discussion we can summarize that, 
the identification of PTMs by the experimental techniques is laborious, 
time-consuming and usually expensive. 

In contrast with the traditional experimental methods, 

computational analysis of lysine PTMs has also been an attractive and 
alternative approach due to its accuracy, cost-effective and high-speed 
[31,32]. The computational methods are more efficient for identifying 
large-scale novel lysine PTM substrates. A summary of the prediction 
pipeline of lysine PTM is shown in Figure 2. The computational tools can 
narrow down the number of potentially candidates and rapidly generate 
useful information for investigating further experimental approach. So 
far the computational prediction of protein lysine PTMs has been an 
important research topic in the field of protein bioinformatics. Although 
the great progress has been made by employing various statistical 
learning approaches with numerous feature vectors, a problem is to 
obtain more accurate prediction. It needs rigorous features encoding 
methods, machine learning, and statistical analysis to predict lysine 
PTMs. Indeed, computational method development of lysine PTM site 
prediction has initiated since 2008 [33]. In the next section, we will 
introduce some existing databases for lysine PTMs.

Residues Reactions Example

Asp (D) phosphorylation 
isomerization to isoaspartyl Protein tyrosine phosphatases; response regulators in two- component systems

Glu (E)

Methylation, Chemotaxis receptor proteins
Carboxylation γ-carboxyglutamyl residues in blood coagulation

Polyglycination Tubulin
Polyglutamylation Tubulin

Ser (S)

Phosphorylation Protein serine kinases and phosphatases
O-glycosylation Notch O-glycosylation

Phosphopantetheinylation Fatty acid synthase
Autocleavages Pyruvamidyl enzyme formation

Thr (T) Phosphorylation
O-glycosylation Protein threonine kinases/phosphatases

Tyr (Y)

Phosphorylation Tyrosine kinases/phosphatases
Sulfation CCR5 receptor maturation

Ortho-nitration Inflammatory responses
TOPA quinone Amine oxidase maturation

His (H) Phosphorylation aminocarboxypropylation Sensor protein kinases in two-component regulatory systems
N-methylation Diphthamide formation / methyl CoM reductase

Lys (K)

N-methylation Histone methylation
N-acylation by acetyl, biotinyl, lipoyl, succinyl, 

ubiquityl groups
Histone acetylation; swinging-arm prosthetic groups; ubiquitin; sumo (small ubiquitin-like 

modifier) tagging of proteins
C-hydroxylation Collagen maturation
Crotonylation Histone lysine modification

Pupylation Prokaryotic ubiquitin like protein degradation protein

Cys (C)

S-hydroxylation (S-OH) Sulfenate intermediates
Disulfide bond formation Protein in oxidizing environments

Phosphorylation Protein tyrosine phosphataseras isoforms
S-acylation ras isoforms

S-prenylation protein splicing Intein excisions

Met (M) Oxidation to sulfoxide Met sulfoxide reductase

Arg (R)
N-methylation Histones

N-ADP-ribosylation the α-subunit of GSα

Asn (N)
N-glycosylation N-glycoproteins

N-ADP-ribosylation Etheno-ADP-ribosylation
Protein splicing Intein excision step

Gln (Q) Transglutamination Protein cross-linking

Trp (T) C-mannosylation plasma-membrane proteins

Pro (P) C-hydroxylation collagen; hypoxia-inducible factor 1

Gly (G) C-hydroxylation C-terminal amide formation

Table 1: Specification of protein PTMs grouped by residue side-chains [6,7].
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Databases of lysine PTM sites

Recently, rapid progresses in proteomic technologies have greatly 
accelerated the identification of well-characterized lysine PTM sites. 
Determinations of lysine PTM data with experimental technologies 
are also greatly extended. How to organize, store and update these data 
becomes an important issue. Up to now, a number of experimentally 
verified lysine PTM databases have been constructed (Table 2). For 
instance, the CPLM is a lysine PTM database that integrates abundant 
protein annotations [34]. In total, the CPLM database contained 45,748 
lysine modification proteins with 189,919 experimentally verified lysine 
modification sites for 122 species (CPLM 1.0). It is expected that huge 
data will be generated from lysine PTMs in the future. Therefore, the 
diversity of protein lysine PTMs requires specialized databases to store 
them. Based on lysine PTM databases, many bioinformatics methods 
have been developed for analyzing the internal motif [35,36]. It is 
becoming a hot topic in the study of protein bioinformatics.

Feature for the computational prediction of lysine PTM sites

Feature mining is one of the most important steps for predicting 
lysine PTM sites. Appropriate features in the prediction model 
enable the accurate prediction of protein lysine PTMs. In general, the 
feature vectors refer to the characterization of the sequences and local 
structures around the protein functional sites. Ideally, the features 
can clearly distinguish PTM sites from other random sites. In the real 
world, however, the feature of protein functional sites can also exist on 
the non-functional sites of proteins. In the prediction PTM sites, this 
specific problem is particularly prominent due to the sequence diversity. 
For instance, some sequence motifs are very weak and not available 
with the sequence evolutionary information [37-42]. To address this 
problem, we can search PSI-BLAST [32,43,44] against the NCBI NR 
database to generate a profile (i.e., position-specific scoring matrix 
[45-50]. Such a sequence profile reflects the conservation and variation 

between protein sequences through the evolutionary information 
[37-39]. Moreover, to isolate the weak motifs from protein sequences, 
Hidden Markov models (HMMs) have been extensively used [51,52]. It 
can examine the unaligned sequences or a common motif within a set 
of unaligned sequences. HMM profiles can be automatically trained or 
estimated, from unaligned protein sequences [51].

In the prediction of lysine PTMs, researchers have made plenty 
of efforts for mining the protein lysine PTM characteristics. These 
characteristics might be suitable for a particular protein lysine PTM 
classification problem, thus mining new features is always an important 
task for lysine PTM prediction. The features are mostly encoded by 
three ways, namely based on the protein sequence, evolutionary, and 
structural information (Figure 2). In most cases, the features are extracted 
from protein sequences because the protein sequence data is more 
enthusiastically available than the protein structure data. In addition, 
the features based on protein sequences are often straightforward and 
the simplest features. For instance, the linear arrangement of residues 
directly depicts the flanking sequences of lysine PTM sites. In the 
linear arrangement of residues, the physicochemical amino acid index 
properties have also been widely used in the prediction of protein lysine 
PTM sites [53,54].

Algorithm of lysine PTM sites prediction
After determining the appropriate features, the next job is to select 

an appropriate machine learning algorithm to integrate these features 
for the prediction of protein lysine PTM sites. Generally, machine 
learning model used for building the trained model to test the novel 
dataset. It will improve the accuracy of the prediction if the prediction 
algorithm is appropriate. These prediction algorithms of lysine PTM 
sites can be classified into two categories, i.e., statistical probabilistic 
algorithms and machine learning algorithms. In the next sections, we 
will discuss some of the probabilistic and machine learning classifiers 
for lysine PTM prediction. 

Figure 1: Important locations for different types of PTMs in a cell [68]. 
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Database Web-site Description

dbPTM [7] http://dbPTM.mbc.nctu.edu.tw/
dbPTM is an integrated resource database for protein PTM, which was collected 

from the biological databases in the public domain such as Swiss-Prot, 
PhosphoELM, O-GlycBase, and UniProtKB protein entries, etc.

SuccinSite [31] http://systbio.cau.edu.cn/SuccinSite/ Hasan et al. created a lysine succinylation site database, which had integrated 
five succinylation families' dataset.

SysPTM2 [69] http://lifecenter.sgst.cn/SysPTM/
Li et al. created a database SysPTM 2.0, which was integrated into two 

datasets, SysPTM-A and SysPTM-B. This database was collected from the 
public data resources and peer reviewed MS/MS literature, respectively. 

CPLM [34] http://cplm.biocuckoo.org

Liu et al. created a lysine modification database term as CPLM, which consisted 
12 types of lysine PTM, including acetylation, butyrylation, crotonylation, 

glycation, malonylation, phosphoglycerylation, propionylation, ubiquitination, 
sumoylation, methylation, succinylation and pupylation.

PupDB [70] http://cwtung.kmu.edu.tw/pupdb/

PupDB is a most popular database for protein pupylation sites, which was 
constructed by collecting the experimentally identified pupylated proteins and 

pupylation sites from the published studies. Until now, it is an updated database 
for lysine pupylation sites.

DbPTM 3.0[71] http://dbptm.mbc.nctu.edu.tw/ Lu et al. developed an informative resource database called DpTM3.0 for PTM 
sites. 

PhosphoSitePlus [72] http://www.phosphosite.org
Hornbeck et al. also created a PhosphoSitePlus database from experimentally 
indentified PTM in human and mouse proteins. It has included phosphorylation, 

acetylation, ubiquitination, and methylation sites.

UbiProt [73] http://ubiprot.org.ru/

The lysine ubiquitin-modified site Database (UbiProt) was integrated thousands 
of high-confidence in vivo identified lysine ubiqutination on the basis of mass 

spectrometry. It has also included the specific information of proteins, including 
the nature of protein, species (mostly yeast and humans), ubiquitin-modified 

feature, references and related links.

SCUD [74] http://scud.kaist.ac.kr/
A special collection of yeast lysine ubiquitin protein and its corresponding 

enzyme database. SCUD in version 1.0 contains 11 E2 enzyme, 42 E3 enzyme, 
20 DUB enzymes as well as 940 ubiquitinated substrate.

mUbiSiDa [75] http://222.193.31.35:8000/About_
ubiquitination.php

Chen et al. created an integrated bioinformatics resource for protein animal 
ubiquitylation sites database termed as mUbiSiDa.

hUbiquitome [76] http://202.38.126.151/hmdd/hubi/

hUbiquitome database released by Peking University, which was included 
the experimental verification of human ubiquitin-associated proteins.  In this 
database a total of 1 E1, 12 E2, and 138 E3 substrates were existed. The 

database is smaller, but the confidence level is higher.

E3Net [77] http://pnet.kaist.ac.kr/e3net/

Korea institute of science and technology bioinformatics laboratory developed 
E3Net. It has been updating significantly and interfaces more friendlily. It has 
included the total 427 species of pan pigment of modified E3 and 4,896 real 

proteins information.

Table 2: Some popular databases for protein PTM sites.

Figure 2: A flow-chart for computational prediction of protein lysine PTMs. Initially, the dataset was collected from public database. Then need to preprocess the 
collected datasets for making proper positive and negative samples. The encoded feature vectors were independently put into the probabilistic/machine learning models 
to produce independent prediction scores. Eventually, optimum performance scores were calculated by using cross-validation and parameter optimization, a confident 
cutoff was considered to identify the lysine PTM site.
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Naïve Bayes

Naïve Bayes (NB) is a statistical probabilistic algorithm based on 
the statistical learning theory of Bayesian theorem [55]. The advantages 
of NB algorithm are very straightforward and high speed. In NB 
theorem, the posterior probability of a random event is the conditional 
probability, which is assigned after the relevant evidence is taken 
into account. The majority of biologists think that, for analyzing the 
biological data NB is an essential algorithm for analyzing biological 
[56]. Although, the NB models are much outlier affected and do not 
handle the noise datasets [57]. In lysine PTM prediction, the NB 
algorithm has been widely used [41].

Random forest

The random forest (RF) algorithm is a machine learning algorithm 
developed by Leo Breiman [58]. This model developed by using an 
ensemble of classification trees. RF has been widely used in lysine 
PTM prediction [31,32]. It was implemented as the RF package in R 
at https://cran.r-project.org/web/packages/randomForest/. RF is one of 
the most influential machine learning algorithm [59].

Support vector machine

Graft is an efficient machine learning algorithm, support vector 
machine (SVM) has been widely used in lysine PTM prediction [32]. In 
particular, the kernel radial basis function (RBF) with LIBSVM package  
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used to train the 
classifiers [60]. For a given training vector xi∈Rn, if the corresponding 
class label is yi∈{-1, 1}, i=1, 2, … , L, then the optimized SVM model 
is given by: 
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where , w is the weight vector to the hyperplane, C is the cost 
parameter, and iζ is the slack variable. The RBF kernel can be easily 
transformed to liner separation from high dimensional features. The 
commonly used RBF function can be defined as:
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jiji xxxxK −−= γ                          	               (3)

where γ is the kernel parameter and γ>0, which determines how 
the samples are transformed to a high- dimensional space. The tuning 
parameters C and γ were maximized based on the training dataset by 
performing grid search.

Neural networks

In machine learning and cognitive science approaches, a neural 
network (NN) is a nonlinear statistical classifier that is able to 
distinguish complex relationships between two variables [61]. For 
example, multilayer perceptron (MLP) is one type of NN model. The 
MLP model has multiple layers, i.e., there are one or more nonlinear, 
hidden layers between the input and output layers. In the field of protein 
bioinformatics research, NNs have also a wide range of applications, 
such as protein functional sites prediction [62-64], protein secondary 
structure prediction [65,66] and tertiary structure prediction [67]. 
Common implementations of NNs software are SNNS (http://www.
ra.cs.uni-tuebingen.de/SNNS/) and FANN (http://leenissen.dk/Fann/
WP/) [68-77].

In this study, we have shown an overview of lysine PTM site 
prediction. The application and development for predicting lysine PTM 
sites is emerging as a promising field in protein bioinformatics research. 
Fundamentally, high-throughput omics techniques require rigorous 
computational analysis for more accurate prediction. Combining 
experimental and computational technologies for analyzing lysine 
PTMs dataset will certainly enhance our knowledge.
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