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Introduction
Multi-stage clinical trial is commonly used to evaluate a new 

treatment against some existing one(s) [1,2]. For one-stage (also called, 
non-sequential) clinical trial design, with a given nominal level α, 
the stopping boundary is the level α critical value for the test of the 
null hypothesis of no difference among the treatments. For multi-
stage clinical trial designs, stopping boundaries should be designed 
to ensure the overall (or family-wise) type-I error be approximately at 
the specified level α. These boundaries serve as stopping guidelines to 
prevent inappropriate early stopping. Such boundaries are not unique, 
and there are large numbers of researches on this problem. It is now 
common in phase III trials sponsored by pharmaceutical industry 
and the National Institute of Cancer to include interim monitoring 
boundaries in the protocol documents [3-6].

Commonly used stopping boundaries include the O’Brein-Fleming 
boundary [2] and the corresponding spending function or a variant of 
it. The sequential conditional probability ratio test (SCPRT) boundary 
[7-9] is derived based on the concept of a negligible discordance 
probability, namely, the chance that the decision to accept or reject the 
null hypothesis based on interim data will reverse would be should the 
trial continue to the planned end. The approach is computationally 
more complex and once the multistage (i.e., boundary) is chosen, we 
can calculate the discordance probability of this design and the SCPRT 
boundary has the feature that it can control the discordance probability 
at a preset small level so that the probability that conclusion obtained 
at an early stage and that at the end of the trial differ is very small and 
negligible. The calculation of the probability is our focus here. However, 
in the existing SCPRT, the discordance probability, type I error and 
power are not easy to compute, and are only given for some selected 
configurations of stages, interim sample sizes and are only available for 
balanced design. In practice, it is desirable to compute these quantities 
for any given configuration of stages, interim sample sizes, balanced or 
imbalanced. Here we investigate a simulation method to compute these 
quantities for general setting of configurations. The simulation results 
are reported and the method is illustrated with a real data example.

In Section 2 we describe the problem and the SCPRT procedure, 

Section 3 describes the proposed simulation method for computing the 
discordance, type I error and power for the SCPRT. Section 4 presents 
the simulation results for some selected configurations of stages, interim 
sample sizes, for both balanced and imbalanced cases, and applies the 
method to a real data set as an illustration.

The problem and Brief Review of the SCPRT
As mentioned in the Introduction that sequential tests are 

commonly used in clinical trials. The SCPRT is a special such test, 
developed by Xiong [7], Tan, Xiong and Kutner [8], Xiong, Tan and 
Boyett [9], etc. With the SCPRT, if a trial is stopped early with a 
conclusion, then statistically the same conclusion would likely to hold 
had the trial continued to its planed end, so that consistent conclusions 
can be achieved with high chance using this sequence of tests. In 
clinical trial, often the parameter θ of interest is the difference among 
the treatments, and the goal is to test the null hypothesis H0: θ ≤ θ0 
vs Ha: θ > θ0. Consider a group sequential test with k-stages, let n1 <
··· < nk be the cumulative sample sizes at these stages, set tj = nj/nk. At
each stage-j, we compute a statistic Sj from observations based on the 
nj individuals, and make a decision whether to stop/continue the trial 
to the next stage, and make a conclusion about the treatment, based on 
Sj. Let 0

ks be the cutoff value of Sk in a non-sequential trail. In SCPRT, 
at each stage time tj, a decision, either stopping the trial or continue to 
the next stage of the trial, is determined by the following conditional 
maximum likelihood ratio

0

0

j ks>0
j j k

j ks

max (S |S =s)
L(t , S |t , ) ,

max (S |S =s)
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Where j k(S |S )∫ is the conditional density of Sj
 given Sk, and it is free 
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of the parameter θ, as long as Sk is a sufficient statistic for θ. The decision 
rule is of the format: continue to the next stage if 0

j j kL(t , S |t , ) [ , ]ks l l∈  
for some l l−∞ < < < ∞ , to be determined such that the test has a given 
nominal level α and power. In general the above conditional maximum 
likelihood, and hence l  and l  are difficult to evaluate. However, if Sj is 
a Browning motion with drift θ on an unit time interval, i.e., Sj ∼ N(θtj , 
tj) (j=1, ..., k; tk=1), then the likelihood ratio is easy to evaluate in closed 
form, j j kL(t , S |t , ) [ , ]s l l∈ for some l l−∞ < < < ∞  is equivalent to Sj 
∈ [aj, bj] for some j ja b−∞ < < < ∞  [9], and the boundaries [aj, bj]’s 
are determined such that the family wise type I error of the sequential 
test is under control by a given nominal level α and power. In this case, 
these boundaries are feasible to evaluate, and will be our focus hereafter. 
To be specific, if assume the responses X1, ...,Xnk iid N(μ, σ2), with σ2 
known. We want to test H0: μ ≤ μ0 vs H1: μ > μ0. Under this assumption,

1/2 1

1
( ~ ( , )

jn

k i j j
i

Sj n X N t tσ θ− −

=

= ∑ , with 1/2 1
0( )knθ σ µ µ− −= −  and tj = nj/nk, 

(j = 1, ...,k). In clinical trial, often the Xi’s are the differences between 
the new and existing treatments, and we are interested in testing the 
hypothesis H0: θ ≤ 0 vs Ha: θ > 0. Here 1/2( )kO nθ −=  corresponding to 
a local alternative, which is more reasonable than the fixed alternative.

The SCPRT stopping boundaries for the one-sided hypothesis H0 vs 
Ha in a k-stage clinical trial are given as 

1/ 2 1/2
j j j j j j j ja  = z t -[2at (1-t )] , b  = z t +[2bt (1 - t )] , (j = 1, ...,k),   (1)α α

Where tj=V ar[Sj]/V ar[Sk] is called the time information fraction. 
Recall that we have one-sided test, so for the non-sequential trial, when 
the test statistic Sk>zα, we reject H0; otherwise accept. For the sequential 
trial, at an intermediate stage j, if Sj∈[aj,bj]

c, we stop the trial and make 
a decision; if Sj>bj , we reject H0; if Sj<aj , we accept H0; if Sj ∈ [aj,bj], 
the trial is continued to next stage. For the final stage k, ak=bk=zα, so 
it’s always stop. If Sk>bk, we reject H0, otherwise accept. In particular, if 
the observed data are iid, then tj=nj/nk; z is the (1-α)- th upper quantile 
of the standard normal distribution, and the values of a=a(k, ρ) and 

b=b(k, ρ) depend on the maximum conditional discordance probability 
ρ (or the maximum discordance probability ρmax), the number of stages 
k and the time points of each stage (the information times). In practice 
often a symmetric boundary pair is used, i.e. a=b, and with balanced 
information times (or tj-tj−1=1/k for j=2, ..., k). In this case the values of 
a=a(k, ρ)(=b =b(k, ρ)), which depends on k, ρ and the sample standard 
deviation σ, are given in Table 1 in Xiong, Tan and Boyett [9], for some 
given σ.

As an example, if the trial has k=4 stages with a known σ, and we 
choose ρ=0.02, then from Table 1 in Xiong, Tan and Boyett [9] we 
find a(= b)=2.953; if we choose ρ=0.005, then a(= b)= 4.227; and the 
corresponding lower/upper boundaries ar/br are obtained by (1).

Other values of a for some selected configurations of k, (n1,...,nk) 
and ρ are given in Table 1 of Xiong, Tan and Boyett [9]. Our goal in this 
communication is to present a simulation based method to compute 
the discordance probability, type I error and power of the SCPRT 
procedure in the general case.

Discordance probability

The computation of discordance probability is technical, so below 
we will first review some of its basic facts. In group sequential clinical 
trial, the decision can be made at some time point nj ahead of the planed 
final stage at time nk, and the decision made at time nj may differ to that 
made at the final time point nk if the trial were continued to the end of 
the trial. It is impossible to make sure that any early decision would be 
the same as the one made at the end of the trial should the trial went 
on. Intuitively, a good group sequential clinical trial should be such that 
the chance of difference between an early decision and that of the non-
sequential trial made at the end should be small (but not too small, 
for one can make the stopping boundaries of the intermediate stages 
arbitrarily large so that there is no intermediate stop and the multi-stage 
trail is the same as a single stage one). The discordance probability of 

ρ K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

0.001 4.750
0.0000000

5.333
0.0001087

5.675
0.0001042

5.921
0.0025000

6.115
0.0001010

6.275
0.0001087

6.411
0.0015361

6.527
0.0001528

6.627
0.0001064

0.005 3.315
0.0018794

3.895
0.0073167

4.227
0.0015905

4.459
0.0051459

4.636
0.0002948

4.778
0.0002568

4.895
0.0043011

4.994
0.0046908

5.080
0.0025789

0.01 2.699
0.0125038

3.271
0.0056435

3.595
0.0010291

3.819
0.0007423

3.987
0.0017641

4.121
0.0101990

4.232
0.0079042

4.325
0.0087858

4.401
0.0095281

0.02 2.109
0.0152921

2.645
0.0040149

2.953
0.0184413

3.166
0.0129084

3.327
0.0200602

3.456
0.0084752

3.562
0.0097695

3.652
0.0082021

3.729
0.0101468

0.03 1.769
0.0317708

2.285
0.0148726

2.583
0.0222321

2.789
0.0156908

2.945
0.0144351

3.068
0.0136087

3.170
0.0085092

3.257
0.0236684

3.329
0.0100660

0.04 1.532
0.0435354

2.031
0.0205869

2.320
0.0180737

2.521
0.0213490

2.672
0.0115770

2.792
0.0167114

2.892
0.0180240

2.975
0.0214667

3.048
0.0236583

0.05 1.353
0.0293684

1.835
0.0331557

2.118
0.0237547

2.313
0.0222455

2.460
0.0244312

2.577
0.0336114

2.674
0.0238787

2.757
0.0450988

2.828
0.0285663

0.06 1.209
0.0411957

1.678
0.0391062

1.951
0.0361116

2.142
0.0210588

2.287
0.0266739

2.402
0.0301154

2.597
0.03114

2.578
0.0285838

2.648
0.0346908

0.07 1.089
0.0521053

1.545
0.0309124

1.813
0.0410975

2.000
0.0405344

2.141
0.0413937

2.254
0.0282409

2.347
0.0095289

2.426
0.0471779

2.494
0.0235725

0.08 0.987
0.0479348

1.431
0.0124945

1.693
0.0370053

1.876
0.0622936

2.015
0.0297653

2.125
0.0350674

2.217
0.0437111

2.294
0.0436937

2.361
0.0458720

0.09 0.898
0.0465217

1.331
0.0822212

1.588
0.0592158

1.767
0.0708414

1.903
0.0400541

2.012
0.0616167

2.101
0.0463154

2.178
0.0280219

2.243
0.0940273

0.10 0.821
0.0739863

1.243
0.0736744

1.494
0.0606802

1.669
0.0334177

1.803
0.0609863

1.910
0.0542537

2.000
0.0560768

2.072
0.0680562

2.138
0.0557694

0.15 0.537
0.1175177

0.907
0.1134592

1.133
0.0594409

1.294
0.0697701

1.416
0.0827621

1.515
0.0594436

1.597
0.0823526

1.666
0.0696073

1.726
0.0882069

0.20 0.354
0.1411367

0.677
0.1063656

0.881
0.1270649

1.027
0.0998896

1.140
0.1292095

1.231
0.1354168

1.307
0.1268173

1.371
0.1287432

1.427
0.1297947

Table 1: Overall Discordance Probability (balanced stages).
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a multi-stage clinical trial is the probability that the sequential test and 
the non-sequential test lead to different decision (reject/acceptance 
of the null hypothesis) when both are used on the same sequence of 
observations. For formal definition of this concept and its computation 
and detailed properties we refer to the paper of Xiong, Tan, Kutner [10] 
and citations there.

Let P(D) be the discordance probability, it is related to k and the (aj, 
bj)’s. Let N be the stopping time of the sequential trial, Ba and Br be the 
acceptance and rejection regions for (N, SN) for testing 0 0:H θ ∈Θ  vs. 

: aHa θ ∈Θ . Let Ra and Rr be the acceptance and rejection regions for 
the same test based on the non-sequential test Sk, with nk fixed. For a 
sequential clinical trial with k stages, Define the events

{( , ) , }a r a
N mD N S S R= ∈Β ∈  and {( , ) , }r a r

N ND N S S R= ∈Β ∈

Then a rD D D= ∪ , and the discordance probability between the 
statistics (N, SN) with k stages and Sk is

( ) ( ) ( ) ( )a r
k P D P D P Dθ θ θρ θ = = +

Note also that
( ) ( ( )) ( ( )) ( ( ))k k kP D P D N n P D N n P D N nθ θ θ θ= ∩ ≤ + ∩ > = ∩ ≤ , 

since ( ) 0kP N n> = , as nk is the final stage time point. Let

( , ) ( | )j j j jn S P N n S= =

Let 1(·) be the indicator function. By Theorem 3.1 in Xiong, Tan, 
Kutner [10], 

( ) { ( ( ) | )}k k kE P D N n Sθρ θ = ∩ ≤

1

1

{1( ) ( , ) | }
,

( ( ) | ) (2)
.{1( ) ( , ) | }

k

j j j j k r
j k

k k ak
k

j j j j k
j

E S a n S S
if S R

P D N n S
if S RE S b n S S

=

=

 < ∈∩ ≤ = 
∈ <



∑

∑





For a sequential clinical trial with k stages, the conditional 
discordance probability is defined as (Xiong, Tan, Kutner [10]) 
ρk,s=P(D|Sk=s), and by (2),

1
,

1

{1( ) ( , ) | }
,

(2)
.{1( ) ( , ) | }

k

j j j j k r
j

k s ak

j j j j k
j

E S a n S S s
if s R
if s RE S b n S S s

ρ =

=

 < = ∈= 
∈ < =



∑

∑





In (2) or (3), we need to compute the ( , )j jn S ’s. For 
continuous end points, typically the normal distribution is assumed, 

i.e. 1/2

1
, ( 1,..., )

jn

j k i
i

S n X j k−

=

= =∑ , with the xi’s iid N(μ, σ2). Thus, for i< j,

22

2 2

~ ( , )

i ii

k kk

j ji

kk k

n nn
n nnSi

N
n nSj n

nn n

µ σσ

σµ σ

   
   

                  
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and 2
1 1| ( ) ~ ( , )Si Sj s N µ σ= , with 

2 2 1
1 ( / ) ( / )( / ) ( / ) /i k i k i k j k i jn n n n n n s n n sn nµ µ σ σ µ−= + − = , and 
2 2 2 2 1 2 2
1 / ( / )( / ) ( / ) ( / )(1 / )i k i k j k i k i k j kn n n n n n n n n n n nσ σ σ σ σ σ−= − = − . 

Thus, for i ji< j, P(S  = t|S  = s)  is given by

| ,

( ) / ( / )(1 / )
( | ) ( | )

( / )(1 / )i j k

i
i k i j

j
i j n n n

i k i j

nt s n n n n
n

P S t S s t s
n n n n

φ σ

φ
σ

 
− −  

 = = = =
−

or 2| ~ ( , ( / )(1 / ) )i j j i i k i jS S N S n n n n n σ− , and the ( , )j jn S
’s can be computed via the following iterative formula

1

| ,
1

0, [ , ], ( 1, 2,..., ).
( , ) (4)

1 ( , ) ( , ) ( | ) . [ , ].
i j k

j j
j

j c
j j i n n n j j

i

if s a b j k
n s

a b n t t s dt if s a bφ
−

=

∈ =
=  − ∈

∑∫




In particular, 1 1 1( , ) 1( [ , ] )cn s s a b= ∈ . 

The above iterative formula for the ( , )jn s ’s is not easy to use 
via simulation based method, as it involves multiple integration. 
Below we consider another expression for the ( , )jn s ’s, also 
from Xiong, Tan, Kutner [10]. Let N be the stopping time, and

*( , ) ( | )nn s P N n S s= > = . Then by Theorem 2.2 and Example 2.1 
in Xiong, Tan, Kutner [10], ( , ) 0jn s = for [ , ]j js a b∈  and 

1 1( , ) { *( , ) | }j j j jn s E n S S s− −= = 

1[ , ] 1 | ,* ( , ) ( | ) , [ , ] , ( 1). (5)
j j j j k

c
a b j n n n j jn t t s dt s a b jφ

−−= ∈ >∫ 

In Xiong, Tan, Kutner [10], the ( )ka  a k,  ρ= ’s and 
( )kb  b k,  ρ= ’s are computed mainly via (3). See also Xiong [11] 

and Xiong and Tan [12]. For each fixed k, they find ( )ka  a k,  ρ=  
and ( )kb  b k,  ρ=  for the maximum value of ρk,s. For this, let 

k s k,s = sup  ρ ρ , and k, max k = sup  ( )ρ θ ρ θ , then a and b are 
determined by ρk or ρk,max. Note k k, max k( )ρ θ ρ ρ≤ ≤ . Also, for very small 
(or large) values of s, any early decision and the final stage decision 
should agree (accept or reject), so ρk exists and should be achieved 
at some moderate value of s. Using ρk, a and b are determined by the 
equation 

1

1

sup {1( ) ( , ) | }
,

(6)
.sup {1( ) ( , ) | }

k

s j j j j k r
j

k ak

s j j j j k
j

E S a n S S s
if s R
if s RE S b n S S s

ρ =

=

 < = ∈= 
∈ < =



∑

∑





However, (a, b) determined by (6) depend on k and given value of 
ρk. In the case of symmetric (a=b) and balanced trial (equal distance 
among the stage time points), Table 1 in Xiong, Tan, Boyett [9] gives 
values of a for different k and ρk. Even for this case, the computation 
is non-trivial, especially for large k. For the symmetric case, below we 
consider a simulation based method for the computation of a=a(k, ρk). 

The Proposed Method
Assume symmetric boundary, then the stopping boundary for the 

j-th stage is [9],
1/2 1/2(2 (1 )) , (2 (1 )) , ( 1,..., ).j j j j j j j ja z t at t b z t at t j kα α= − − = + − =

Computation of discordance probability

To emphasize its dependence on a, we re-write ρk in (6) as ρk(a). 
However, the supreme in (6) is not easy to evaluate, so we consider the 
expected conditional discordant probability, given by

0
1

1

( ) {1( ) ( , ) | }

{1( ) ( , ) |

(

)

k
r

k j j j j k
j

k
a

j j j j k
j

a E E S a n S S R

E S b n S S R

θρ
=

=

= < ∈

+ < ∈

∑

∑





 

	             (7)

One may attempt to minimize the above expected conditional 
discordance probability over a (or the maximum conditional probability, 
or ρmax), however this does not make sense. If we take a to be sufficiently 
large, then at each stage time nj, Sj will always be in [aj, bj] so that there is 
no stopping at any intermediate stage, and the sequential trial becomes 
the same as the non-sequential trial, and the discordance probability is 
zero. This is not desired, as we want the sequential trial to be different 
from the non-sequential one, and has the chance of actual early stop 
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if extreme results observed at an intermediate stage. So the values of a 
can only be computed with each subjectively given value of ρ (or ρ, or 
ρmax) and the values of ρ (or ρ, or ρmax) should be chosen such that the 
probability of the conclusion by sequential test being reversed by the 
test at the planned end is small, but not too small [7,8].

Under θ0=0, assume σ=1, 1/2

1
~ (0,1)

kn

k k i
i

S n X N−

=

= ∑ , and for given level 

α, a
kR  = {S }az≤ , with za being the (1−α)-th upper quantile of N(0, 1). 

Note 
| ,| ( ) ~ ( | )

j k kj k n n nS S s sφ= ⋅ , or 2| ~ , (1 )j j j
j k k

k k k

n n n
S S N S

n n n
σ

 
− 

 , and

| ,( , )
{1( ) ( , ) | } ( , ) ( | ) ,

j k k
j

j j j j k j n n n ka
E S a n S S z n t t S z dtα αφ

−∞
< > = >∫   

| ,( , )
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So (7) is re-written as 
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Below, for given a, we compute kρ  (a) using (8) by simulation. We 
use the values of a given in Table 1 of Xiong, Tan, Boynett [9], and 
compute the corresponding ρ  (a) for each k = 2, ..., 10. For each given 
a, the computation is given via the following steps 

i) Compute the right hand side of (8). The computations will 
involve the ( , )jn t ’s, the | ,( , )

( , ) ( | )
j k k

j
j n n n ka

n t t S z dtαφ
−∞

>∫  s and the
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>∫  ’s.

In particular, 1 1 1( , ) 1( [ , ] )cn t t a b= ∈ . For j > 1 the 1( , )n t ’s are 
given by (5), and so we also need to compute *

1( , )jn t− .

For given kρ , for i = 1, ...,M (typically M = 10, 000), sample 
(1) ( ),..., m
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Note in the above we only use the S(i) k ’s satisfying either the 
condition ( )i

kS zα> or ( )i
kS zα≤ .

ii). In i), for each fixed j, we need to compute ( ){1( ) ( , ) | }i
j j j j kE S a n S S zα< >  

(i = 1,...,M1) and ( ){1( ) ( , ) | }i
j j j j kE S b n S S zα> ≤  (i = 1, ...,M2). For this, for 

each fixed i and ( )i
kS  , for r = 1, ...,M3 (typically M3 ≥ 10, 000) and d = 

1, 2, ..., j, sample ( , ) ( ) ( )
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iii) In the above we need to compute ( , )( , )i r
j jn S for each ( , )i r

jS

and j = 1,...,k. For j = 1, ( , ) ( , )
1 1 1 1( , ) 1( [ , ]i r i r c
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(d = 1, ..., j − 1). then count the number ( )l
je of times N(l) = nj, i.e., ( )l
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= 1 if ( ) [ , ]l

d d dS a b∈  for d = 1, ..., j − 1 and ( ) [ , ]l c
j j jS a b∈ ; otherwise 

set ( )l
je  = 0. Set 
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Computation of type I error

Recall in the single stage case, the theoretic (or asymptotic) type 
I error is the significance level α, while the observed type I error for 
testing H0 vs H1 in the simulation is 

0 ( )
knP S zαθα == >

In the general k(>1) stages case, we need to control the family-wise 
type I error to be no more than α, and for continuous type statistic, to 
be equal α i.e.,

01
( , ), (1 );( )

k k

k
n j j n rr

P S a b j r S bθα ==
= ∈ ≤ < >∑

Simulation algorithm: Denote 1/2
1

.jn
j k ii

S n x−
=

= ∑  Given M (typically 
M ≥ 10,000). Set e = (e1,....,eM) = (0, ..., 0). For i = 1, ..., M, do the 
following

i) Sample ϵ1 ∼ N(0, 1), set S1 = (n1/nk)
1/2ϵ1. If S1 > b1, re-set ei = 1; 

else if S1 ∈ [a1, b1], sample ϵ2 ∼ N(0, 1) and set S2 = S1+(n2 − n1)/nk
−1/2 

ϵ2. If S2 > b2, re-set ei = 1;

else if S2 ∈ [a2, b2], sample ϵ3 ∼ N(0, 1) and set S3 = S2+(n3 – n2)/nk
−1/2 

ϵ3. If S3 > b3, re-set ei = 1;

…

else if Sk-1 ∈ [ak-1, b k-1],, sample ϵk ∼ N(0, 1) and set Sk = Sk-1+(nj – nj-

1)/nk
−1/2 ϵk. If Sk > bk(= zα), re-set ei = 1.

ii) The simulated type I error is

1

1ˆ .
M

i
i

e
M

α
=

= ∑
Computation of power

Recall in the single stage case, the theoretic (or asymptotic) power 
for given θ ≠ 0 can be computed from the asymptotic distribution, 
while the observed power in the simulation is, for testing H0 vs H1,

( ) ( ).
knP S zθ αβ β θ= = >

In the general k(> 1) stages case,

1
( ) ( ( , ), ( ); ).

k

k
n j j n rr

P S a b j r S bθβ β θ
=

= = ∈ < >∑
Simulation algorithm: Denote 1/2

1
jn

j k ii
S n x−

=
= ∑ . Given M (typically 

M ≥ 10, 000). Set e = (e1, ...., eM) = (0, ..., 0). For i = 1, ...,M, do the 
following

i) Sample 1 1~ ( ,1)N nε θ , set S1 = (n1/nk)
1/2ϵ1. If S1 > b1, re-set ei = 1;

else if S1 ∈ [a1, b1], sample 2 2 1~ ( ,1)N n nε θ−  and set S2 = S1 + ((n2 

− n1)/nk)
−1/2ϵ2. If S2 > b2, re-set ei = 1;

else if S2 ∈ [a2, b2], sample 3 3 2~ ( ,1)N n nε θ  and set S3 = S2+((n3−
n2)/nk)

1/2ϵ3.

If S3 > b3, re-set ei = 1;

…



Citation: Wang Z, Yuan A, Tan MT (2016) Computation of the Properties of Multi-Stage Clinical Trial Design Based on SCPRT. J Clin Trials 6: 274. 
doi:10.4172/2167-0870.1000274

Page 5 of 7

Volume 6 • Issue 4 • 1000274J Clin Trials
ISSN: 2167-0870 JCTR, an open access journal

else if Sk−1 ∈ [ak−1, bk−1], sample 1~ ( ,1)k k kN n nε θ−−  and set Sk = 
Sk−1+((nj − nj−1)/nk)

1/2ϵk. If Sk > bk(= zα), re-set ei = 1.

ii) The simulated type I error is

1

1ˆ .
M

i
i

e
M

α
=

= ∑
Simulation Results and Application
Simulation results

In this section we present simulation results for the discordance 
probability, type I error and power, for some selected configurations of 
k, (n1, ..., nk) for both balanced and imbalanced designs. 

From the algorithm in Section 3.1 we see that, the discordance 
probability depends on k and α, but not on the configuration of (n1, 
...,nk). The simulated mean discordance rate is given in Table 1 below, 

along with the maximum discordance rate ρ from Table 1 of Xiong, Tan, 
Boynett [9].

Simulation results of type I errors for some selected configurations 
are given in Table 2 below, for the balanced case, with n1 = n2−n1 = · · · = 
nk − nk−1 = 50. In each case, the number in the upper row is the value of 
a, from Table 1 in Xiong, Tan, Boynett [9]. The number inside bracket 
in the lower row is the corresponding simulated type I error. The Monte 
Carlo size is M = 500,000.

Table 3 is the results for family-wise type I error for unbalanced case 
for some selected K and (n1, ..., nk)’s, we omitted the a values which are 
the same as in Table 2. The rejection rates at each intermediate stages 
are also displayed. In brackets are the sample size vector, for example 
(40, 75, 100) means a three-stage design with (n1, n2, n3) = (40, 75, 100). 
We see that when ρ is small, the early rejection rate is very small (<0.01), 
so the multi-stage design and the one-stage design is very similar. For 

ρ K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

0.001 4.750 
(0.0496)

5.333 
(0.0502)

5.675 
(0.0500)

5.921 
(0.0505)

6.115 
(0.0497)

6.275 
(0.0503)

6.411 
(0.0505)

6.527 
(0.0499)

6.627 
(0.0500)

0.005 3.315 
(0.0495)

3.895 
(0.0502)

4.227 
(0.0503)

4.459 
(0.0508)

4.636 
(0.0503)

4.778 
(0.0502)

4.895 
(0.0499)

4.994 
(0.0495)

5.080 
(0.0502)

0.01 2.699 
(0.0503)

3.271 
(0.0502)

3.595 
(0.0506)

3.819 
(0.0500)

3.987 
(0.0503)

4.121 
(0.0505)

4.232 
(0.0501)

4.325 
(0.0509)

4.401 
(0.0505)

0.02 2.109 
(0.0507)

2.645 
(0.0507)

2.953 
(0.0509)

3.166 
(0.0504)

3.327 
(0.0515)

3.456 
(0.0510)

3.562 
(0.0511)

3.652 
(0.0514)

3.729 
(0.0515)

0.03 1.769 
(0.0519)

2.285 
(0.0514)

2.583 
(0.0514)

2.789 
(0.0512)

2.945 
(0.0524)

3.068 
(0.0516)

3.170 
(0.0521)

3.257 
(0.0522)

3.329 
(0.0519)

0.04 1.532 
(0.0521)

2.031 
(0.0520)

2.320 
(0.0525)

2.521 
(0.0522)

2.672 
(0.0526)

2.792 
(0.0528)

2.892 
(0.0526)

2.975 
(0.0530)

3.048 
(0.0528)

0.05 1.353 
(0.0529)

1.835 
(0.0529)

2.118 
(0.0527)

2.313 
(0.0533)

2.460 
(0.0533)

2.577 
(0.0533)

2.674 
(0.0538)

2.757 
(0.0542)

2.828 
(0.0537)

0.06 1.209 
(0.0532)

1.678 
(0.0535)

1.951 
(0.0537)

2.142 
(0.0536)

2.287 
(0.0546)

2.402 
(0.0542)

2.597 
(0.0540)

2.578 
(0.0541)

2.648 
(0.0540)

0.07 1.089 
(0.0538)

1.545 
(0.0544)

1.813 
(0.0546)

2.000 
(0.0543)

2.141 
(0.0553)

2.254 
(0.0550)

2.347 
(0.0559)

2.426 
(0.0555)

2.494 
(0.0556)

0.08 0.987 
(0.0543)

1.431 
(0.0552)

1.693 
(0.0553)

1.876 
(0.0557)

2.015 
(0.0558)

2.125 
(0.0560)

2.217 
(0.0562)

2.294 
(0.0567)

2.361 
(0.0567)

0.09 0.898 
(0.0556)

1.331 
(0.0561)

1.588 
(0.0564)

1.767 
(0.0565)

1.903 
(0.0568)

2.012 
(0.0571)

2.101 
(0.0567)

2.178 
(0.0573)

2.243 
(0.0572)

0.1 0.821 
(0.0569)

1.243 
(0.0565)

1.494 
(0.0570)

1.669 
(0.0577)

1.803 
(0.0583)

1.910 
(0.0588)

2.000 
(0.0579)

2.072 
(0.0584)

2.138 
(0.0588)

0.15 0.537 
(0.0607)

0.907 
(0.0619)

1.133 
(0.0623)

1.294 
(0.0631)

1.416 
(0.0636)

1.515 
(0.0639)

1.597 
(0.0645)

1.666 
(0.0645)

1.726 
(0.0652)

0.2 0.354 
(0.0665)

0.677 
(0.0677)

0.881 
(0.0682)

1.027 
(0.0703)

1.140 
(0.0704)

1.231 
(0.0712)

1.307 
(0.0719)

1.371 
(0.0724)

1.427 
(0.0729)

Table 2: Overall Type I Error (normal error distribution and balanced stages).

ρ (60,100) (40,75,100) (35,55,75,100) (30,45,65,85,100)
0.001 (0.0006,0.0495) (0.0002,0.0012,0.0506) (0.0001,0.0003,0.0011,0.0504) (0.0001,0.0002,0.0005,0.0023,0.0496)
0.005 (0.0018,0.0497) (0.0006,0.0028,0.0501) (0.0005,0.0011,0.0027,0.0501) (0.0003,0.0006,0.0014,0.0044,0.0503)
0.01 (0.0031,0.0503) (0.0013,0.0043,0.0500) (0.0009,0.0019,0.0040,0.0504) (0.0007,0.0012,0.0023,0.0059,0.0505)
0.02 (0.0051,0.0506) (0.0024,0.0065,0.0502) (0.0017,0.0033,0.0062,0.0509) (0.0014,0.0024,0.0042,0.0086,0.0505)
0.03 (0.0069,0.0510) (0.0036,0.0087,0.0509) (0.0027,0.0048,0.0082,0.0513) (0.0021,0.0035,0.0057,0.0107,0.0506)
0.04 (0.0085,0.0515) (0.0047,0.0106,0.0519,) (0.0033,0.0060,0.0099,0.0513) (0.0027,0.0047,0.0073,0.0129,0.0513)
0.05 (0.0106,0.0519) (0.0056,0.0121,0.0520) (0.0043,0.0076,0.0120,0.0527) (0.0034,0.0056,0.0085,0.0144,0.0522)
0.06 (0.0120,0.0525) (0.0068,0.0140,0.0527) (0.0050,0.0087,0.0133,0.0530) (0.0043.0.0070,0.0104,0.0165,0.0531)
0.07 (0.0136,0.0523) (0.0082,0.0159,0.0533) (0.0062,0.0104,0.0154,0.0533) (0.0049,0.0081,0.0117,0.0181,0.0534)
0.08 (0.0151,0.0533) (0.0094,0.0180,0.0541) (0.0070,0.0116,0.0171,0.0541) (0.0058,0.0093,0.0132,0.0198,0.0531)
0.09 (0.0170,0.0541) (0.0107,0.0199,0.0547) (0.0078,0.0126,0.0183,0.0545) (0.0066,0.0105,0.0146,0.0217,0.0546)
0.1 (0.0186,0.0544) (0.0120,0.0219,0.0555) (0.0091,0.0146,0.0206,0.0553) (0.0075,0.0118,0.0164,0.0236,0.0553)

0.15 (0.0269,0.0576) (0.0187,0.0307,0.0591) (0.0144,0.0220,0.0291,0.0584) (0.0123,0.0185,0.0244,0.0320,0.0590)
0.2 (0.0357,0.0616) (0.0261,0.0396,0.0636) (0.0200,0.0298,0.0380,0.0634) (0.0178,0.0258,0.0331,0.0411,0.0637)

Table 3: Type I error rate at each stage, unbalanced design.
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moderate values of ρ (0.01<ρ<0.1), there are non-negligible early stage 
rejections and the family- wise type I error is close to that of the one-
stage design. For large values of ρ (> 0.1), although there is good chance 
of early rejections, but the family-wise type I error has some deviation 
from the nominal level α. 

Below is the power result by simulation. They are under the same 
set-up as in Table 1, balanced stages with n1 = n2 − n1 = · · · = nk − nk−1 = 
50, except that θ ≠ 0. The value of a is omitted (Table 4).

Table 5 shows the powers at each interim stage, for some selected 
sample sizes and θ.

Real data analysis

We use the beta-blocker heart attack trial (BHAT) data described in 
Tan, Xiong and Kutner [8] as an illustration of the method. The BHAT 
was a randomized double-blind trial comparing propranolol (n=1916) 
with placebo (n=1921) in patients with recent myocardial infarction. 
The trial was terminated early as a result of a large treatment benefit. 
Aspects on the interim monitoring and early stopping of this trial have 
been summarized in DeMets et al. [13], Lan and DeMets [14], and 
DeMets and Lan [15]. The total number of deaths was postulated to 
be 628. Patient accrual went 2 years from June 1978 to June 1980 with 
a 2-year follow-up period. Thus, the maximum duration of the trial 
was 4 years. Seven interim analyses at the times the Policy and Data 
Monitoring Board met had been planned using the O’Brien-Fleming 

boundary. With an adjustment for compliance, 3-year mortality 
rates were projected to be 0.1746 for the placebo group and 0.1375 
for the treatment group. Thus, the log-hazard ratio of the control to 
the experimental treatment is 0.26, which is deemed the minimum 
difference of clinical importance to be detected. Roughly 628 deaths are 
required for a fixed-sample size test to declare such a difference to be 
significantly different from zero at a significance level of 5% with 90% 
power. The O’Brien-Fleming boundary was crossed at the sixth interim 
analysis and the trial was then stopped 9 months early. The observed 
number of deaths at 3.25 years of study was 318. A reasonable guess 
of the number of deaths at the planned end was 408. The information 
time is (0.137, 0.189, 0.309, 0.434, 0.605, 0.779, 1). To implement the 
SCPRT, let ρ=0.03. Then from Table 1, a=b = 3.068 for K=7, by which 
the lower and upper boundaries for the z statistic are (0.626, 0.658, 
0.636, 0.514, 0.216, 0.254, 1.645) and (1.077, 1.281, 1.653, 1.942, 2.206, 
2.309, 1.645). The SCPRT boundary is still crossed at the six interim 
analysis because the value of the standardized log-rank statistic for the 
difference in mortality is 2.820 and the boundary value is 2.309. The 
mean discordance probability between the sequential test and the non-
sequential test at the planned end of the four year study is ρ=0.0304, 
which indicates that it is highly unlikely that the conclusion would be 
reversed had the trial continued to the planned end. The discordance 
probabilities provided a less conservative assessment of the likelihood 
of trend reversal than does the stochastic curtailing procedure. The 
discordance probability refers to the probability of decision reversal of 

ρ  K = 2 k = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
0.001 0.56038 0.71381 0.81637 0.88447 0.92943 0.95709 0.97527 0.98539 0.99118
0.005 0.56162 0.71229 0.8159 0.88418 0.92928 0.95726 0.97493 0.98523 0.99113
0.01 0.56096 0.71059 0.81491 0.88419 0.92924 0.95725 0.97412 0.98498 0.99082
0.02 0.56056 0.71223 0.81522 0.88428 0.92873 0.95593 0.97334 0.98415 0.99078
0.03 0.56058 0.70946 0.81369 0.88368 0.92763 0.95585 0.97318 0.98365 0.99025
0.04 0.5606 0.71103 0.81296 0.88209 0.92751 0.95502 0.9727 0.98336 0.98959
0.05 0.56024 0.70861 0.81287 0.88249 0.92604 0.95434 0.97162 0.9828 0.98916
0.06 0.56129 0.71004 0.81174 0.88085 0.92538 0.95414 0.97174 0.98211 0.98881
0.07 0.56047 0.70901 0.81037 0.87976 0.92392 0.95304 0.97048 0.98138 0.98827
0.08 0.56027 0.70731 0.80996 0.8794 0.92306 0.95183 0.96955 0.98066 0.98753
0.09 0.56013 0.70755 0.80897 0.8779 0.92218 0.95041 0.96873 0.98007 0.98695
0.1 0.56009 0.70658 0.80777 0.87665 0.92072 0.94984 0.96834 0.97915 0.98626

0.15 0.559 0.70205 0.80285 0.87165 0.9152 0.94389 0.96266 0.97504 0.9825
0.2 0.55789 0.69728 0.79649 0.86283 0.90817 0.93762 0.95682 0.96901 0.97753

Table 4: Power (normal error distribution and balanced stages and  θ = 0.18).

ρ (60,100) (40,75,100) (35,55,75,100) (30,45,65,85,100)
0.001 (0.0990,0.8010) (0.0218,0.1837,0.7966) (0.0136,0.0581,0.1811,0.8038) (0.0085,0.0261,0.0951,0.2919,0.7991)
0.005 (0.1656,0.8059) (0.0509,0.2596,0.7997) (0.0326,0.1000,0.2494,0.7954) (0.0229,0.0569,0.1504,0.3684,0.8088)
0.01 (0.2052,0.8019) (0.0791,0.3031,0.8029) (0.0505 0.1358 0.2883 0.8022) (0.0317,0.0794,0.1863,0.4014,0.8049)
0.02 (0.2594,0.7994) (0.1110,0.3636,0.7997) (0.0769 0.1829 0.3456 0.8055) (0.0512,0.1103,0.2330,0.4495,0.8046)
0.03 (0.2896,0.7982) (0.1349,0.3868,0.7961) (0.0916 0.2045 0.3682 0.7978) (0.0653,0.1401,0.2756,0.4783,0.8015)
0.04 (0.3253,0.8021) (0.1519,0.4219,0.8079) (0.1041 0.2235 0.3916 0.7939) (0.0799,0.1584,0.2916,0.4856,0.7969)
0.05 (0.3587,0.8012) (0.1705,0.4327,0.8084) (0.1262 0.2604 0.4256 0.8077) (0.0912,0.1805,0.3163,0.5173,0.8004)
0.06 (0.3725,0.7983) (0.1880,0.4539,0.8043) (0.1362 0.2694 0.4329 0.7970) (0.1024,0.1946,0.3380,0.5326,0.8030)
0.07 (0.3922,0.8013) (0.2035,0.4684,0.7956) (0.1512 0.2961 0.4603 0.8059) (0.1105,0.2068,0.3461,0.5337,0.7965)
0.08 (0.4132,0.7977) (0.2180,0.4854,0.7999) (0.1588 0.3095 0.4713 0.8032) (0.1255,0.2310,0.3724,0.5518,0.8054)
0.09 (0.4318,0.8008) (0.2390,0.4977,0.7949) (0.1796 0.3268 0.4877 0.7999) (0.1374,0.2419,0.3831,0.5569,0.8002)
0.1 (0.4335,0.7976) (0.2412,0.5087,0.7987) (0.1855 0.3330 0.4909 0.7875) (0.1473,0.2584,0.4020,0.5703,0.8008)

0.15 (0.5058,0.7983) (0.3143,0.5686,0.7957) (0.2408 0.3986 0.5477 0.7898) (0.1963,0.3170,0.4613,0.6152,0.7985)
0.2 (0.5549,0.7974) (0.3647,0.6088,0.7872) (0.2877 0.4440 0.5845 0.7847) (0.2323,0.3559,0.4974,0.6406,0.7860)

Table 5: Power at each stage, unbalanced design (θ = 0.25).
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the whole interim analysis procedure, whereas stochastic curtailing is 
local and provides a conditional power of 0.8802 (or the conditional 
probability of reversal is 0.13), assuming the same number of deaths of 
408 at the end.

Conclusion
We proposed a simulation method for the computation of the 

properties of the sequential conditional probability ratio test in group 
sequential clinical trial setting, including the discordance probability, 
type I error and power. The method applies to the general configuration 
with any number of stages, with any given numbers of sample sizes at 
each stage, and the method is easy to use. Thus the SCPRT procedure 
can be used more conveniently, is now for broader application, instead 
of some selected configurations. The method is applied to a real data 
example to illustrate its usage. With the simulation method, in future 
designs of individual clinical trials, we can make more comparisons of 
performance of the SCPRT method with those of other commonly used 
ones such as the O’Brien-Fleming procedure in designing the clinical 
trial so that we can choose the most appropriate design for a particular 
trial.
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