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ABSTRACT

Objective: This study was therefore designed to conduct a robust analysis of Colorectal cancer (CRC) immune 
microenvironment to identify specific genes and pathways that can be targeted in an effort to achieve more effective 
immunotherapy outcomes. 

Methods: Using five Independent data sets, we analyzed expression profiles associated with 29 different immune 
signatures, and we used these profiles to guide the hierarchical clustering of CRC samples based on their immune 
micro environmental composition. 

Results: We were able to cluster our CRC samples based on whether they had exhibited high, medium, or low levels 
of infiltration by immune cell types associated with tumor clearance (Immunity-H, Immunity-M, and Immunity-L, 
respectively). Samples in the Immunity-H subset exhibited a “hot” immune microenvironment, with higher stromal 
scores, higher immune scores, and lower tumor purity. The microsatellite instability (MSI) group included the 
majority of the Immunity-H samples, whereas most Immunity-M and Immunity-L samples were incorporated into 
the microsatellite stability (MSS).The vast majority of patients with KRAS mutations were in the Immunity-L and 
MSS groups, whereas the majority of patients exhibiting BRAF V600E mutations were found in the Immunity-H 
and MSI-H samples. TMB high samples included a majority of the Immunity-H samples and a small subset of the 
Immunity-M samples. LCK, GNGT2, CD3G, CCR4, and CCR5 were significantly enriched in pathways including 
T cell activation, lymphocyte differentiation, and leukocyte cell-cell adhesion when comparing Immunity-H vs. 
Immunity-L samples.
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ABBREVIATIONS

TCGA: The Cancer Genome Atlas; CRC: Colorectal cancer; 
NSCLC: non-small cell lung cancer; MMRD: Mismatch-
Repair-Deficient; MSI: Microsatellite Instability; ICIs: Immune 
Checkpoint Inhibitors; TIME: Tumor Immune Microenvironment; 
TME: Tumor Micro Environment; ECM: Extra Cellular Matrix; 
WGCNA: Weighted Correlation Network Analysis; OS: Overall 
Survival; GEO: Gene Expression Omnibus; ssGSEA: Single-
Sample Gene-Set Enrichment Analysis; SNVs: Single Nucleotide 
Variants; WES: Whole-Exome Sequencing; DEG: Differentially 
Expressed Gene; TILs: Tumor Infiltrating Lymphocytes.

BACKGROUND

Colorectal cancer (CRC) remains the third most prevalent driver 

of cancer-associated mortality in the world [1]. At present, surgery 
remains the most effective treatment strategy for CRC, but 80% 
of patients still experience recurrence within a 3 year period [2]. 
Novel chemotherapeutic regimens have extended patient survival 
significantly, but rates of drug resistance remain high and lead to 
poor patient outcomes [3]. There is thus an urgent need for the 
development of novel treatments for this disease. 

Immunotherapy-based regimens have been a recent area of focus 
and have achieved durable responses in patients with melanoma 
[4,5], Non-Small Cell Lung Cancer (NSCLC) [6,7], and other 
difficult-to-treat conditions. In 2017, checkpoint immunotherapy 
was approved to treat Mismatch-Repair-Deficient (MMRD) 
heavily mutated CRC tumors [8] and those with significant Micro 
Satellite Instability (MSI) [9]. However, these Immune Checkpoint 
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Inhibitors (ICIs) are largely ineffective for the treatment of CRC 
tumor not meeting these criteria. In retrospective analyses, certain 
Tumor Immune Micro Environment (TIME) classes were found 
to be associated with more favorable ICI treatment outcomes [10].

The overall Tumor Micro Environment (TME) is composed of a 
wide variety of stromal and immune cell types, as well as extracellular 
components such as the Extracellular Matrix (ECM) and a range of 
cytokines and growth factors [11]. The specific composition of the 
TME can influence rates of tumor progression, and the modulation 
of the immune cell subsets that compose the TIME represents an 
attractive therapeutic strategy for the treatment of a range of tumor 
types [12,13].

There is strong evidence suggesting that an immunosuppressive 
TIME can markedly constrain the efficacy of CRC treatment 
efforts [14]. For example, Yang Wu et al. found significantly higher 
rates of M0 macrophage, M1 macrophage, and CD4 memory T cell 
infiltration in CRC tissues relative to healthy tissue [15]. Tumor 
Infiltrating Lymphocytes (TILs) in MSI-H CRC tumors express 
higher levels of PD-1 than do non-MSI-H tumors [16]. CRC tumors 
that exhibit higher levels of Th1 and CD8+ T cell infiltration have 
been shown to have lower rates of metastasis and recurrence [17]. 
While these results are promising, further studies of the TIME in 
CRC patients are warranted.

At present, CRC patients are routinely tested for BRAF, KRAS, 
and NRAS mutations as these mutations are liked to tumor 
responsiveness to anti-VEGF and anti-EGFR treatment [18,19]. 
BRAF mutations, in particular, are associated with a poor prognosis 
among CRC patients [20, 21]. However, BRAF mutations can also 
be associated with higher rates of MSI, leading to far better patient 
outcomes [22]. Liao et al. found that KRAS mutations that favor 
CRC development can also promote immunosuppression [23]. 
The specific relationship between TIME composition, BRAF and 
KRAS mutation status, and MSI or MSS status, however, remains 
to be explored in detail in CRC tumors. 

In the present study, we utilized a hierarchical clustering approach 
in an effort to identify specific TIME subclasses by analyzing gene 
expression data from bulk CRC tissue samples. Through this 
approach, we hope to improve future predictive analyses and to 
aid in the identification of novel targets that may be amenable to 
therapeutic intervention.

MATERIALS AND METHODS

Sample datasets 

The Ensemble v69 assembly was used to generate FKPM values. 
Data pertaining to 397 CRC patients were obtained from The 
Cancer Genome Atlas (TCGA). In addition, gene expression 
data from 632 CRC patient samples were downloaded from 
Gene Expression Omnibus (GEO), datasets: GSE13294 (n=154), 
GSE24551 (n=159), GSE41568 (n=132), and GSE42284 (n=187).

Clustering

Enrichment levels of 29 different immune signatures were initially 
assessed in each analyzed CRC dataset on a sample-by-sample basis 
by using single-sample Gene-Set Enrichment Analysis (ssGSEA) 
scores [24]. These enrichment scores were then used for the 
hierarchical clustering of these CRC patient samples. 

Tumor Mutational Burden (TMB) analysis

We downloaded files (VCF format) containing Whole-Exome 
Sequencing (WES)-derived somatic mutation data called by 
Mutect2 from (TCGA). The TMB was defined as the number 
of coding region somatic mutations per megabase. Mutations 
included both Single Nucleotide Variants (SNVs) as well as small 
insertions/deletions (INDELs, <20 bp). Synonymous mutations 
were included in the F1CDx approach used herein, whereas neither 
stop-gain mutations in tumor suppressor genes nor hotspot driver 
mutations were included. The cutoff value for defining a sample as 
TMB-high in this analysis was ≥ 20 mutations/Mb.

Immune score, stromal score, and tumor purity 
analyses

We utilized the ESTIMATEA tool to estimate tumor purity and 
to generate scores corresponding to the estimated frequency of 
immune cells and stromal cells within a given tumor sample [25].

Analysis of tumor-infiltrating immune cell profiles 

We utilized the CIBERSORT tool [26] in order to estimate the 
relative frequencies of 22 different subsets of human immune cells 
in our tumor tissue samples. Sample deconvolution was conducted 
using P<0.05 and 1000 permutations as criteria. Mann-Whitney U 
tests were used to compare the proportions of different immune 
cell subsets between tumor subtypes. 

Differentially Expressed Gene (DEG) identification 

CRC patient gene expression data from (TCGA) database were 
downloaded, and the R limma package [27] was used to identify genes 
that were differentially regulated when comparing Immunity-H and 
Immunity-L samples. The Benjamin and Hochberg method was 
utilized to correct P-values for multiple testing in order to generate 
false discovery rate (FDR) values. DEGs were identified as genes 
with an FDR<0.05 and a |log FC|>2.

Detection of gene modules within CRC sample gene 
expression data 

We utilized a Weighted Correlation Network Analysis (WGCNA) 
approach to identify clusters (modules) of highly correlated genes 
in these CRC samples [28].

Construction of a Protein-Protein Interaction (PPI) 
network

Identified genes within modules were used to construct PPI 
networks using the STRING database with a 0.90 interaction 
cutoff [29]. Cytoscape 3.7.2 was used to explore network topology, 
and genes with a degree of 10 or greater were considered hub genes.

Functional enrichment analysis

Identified DEGs were subjected to GO and KEGG pathway 
enrichment analyses using the “cluster Profler” R package [30]. 
Enrichment was considered significant when P<0.05.

Survival analysis

The Overall Survival (OS) of CRC patients was compared on the 
basis of tumor subtype and expression profiles of interest using 
Kaplan-Meier curves and the log-rank test, with P<0.05 as the 
significance threshold. Survival analyses were conducted using The 
Cancer Genome Atlas (TCGA) and GSE24551 datasets, for which 
survival data were available.
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RESULTS 

Classification of CRC immune subtypes

We began by assessing CRC patient samples and examining 
the expression profiles of 29 immune-associated gene sets that 
correspond to specific signaling pathways, cell types, and functional 
activities. Andrew Futrea and Vesteinn Thorsson have previously 
used these 29 immune-associated gene sets to classify tumours 
[31,32].

We used ssGSEA scores to evaluate the relative enrichment of 
these different gene sets in CRC samples from five CRC datasets 
(TCGA, GSE13294, GSE42568, GSE42284, and GSE24551), and 
we performed hierarchical clustering to group these samples into 
three subsets. Similar clustering outcomes were achieved for all 
five datasets, with three clearly separated sample clusters (Figures 
1A and 1B, Figures S1). These clusters were defined as follows: 
Immunity High (Immunity-H), Immunity Medium (Immunity-M), 
and Immunity Low (Immunity-L) based on the relative immune 
score values in these different clusters, with Immunity-H samples 
having higher average immune scores than Immunity-L samples 
in all analyzed datasets. When we evaluated these samples based 
on their stromal scores and tumor purity, we similarly found that 
Immunity-H samples were predicted to contain higher numbers of 
immune and stromal cells than were Immunity-L samples, which 
contained primarily tumor cells.

Assessment of immune checkpoint marker expression 
and the tumor infiltrating lymphocytes in CRC 
sample subsets

Tumor Infiltrating Lymphocytes (TILs) can often be found in the 
tumor stroma and within tumor themselves. TIL functions can 
dynamically change throughout tumor progression and in response 
to anticancer therapy [33]. We next utilized the CIBERSORT 
algorithm in order to assess differences in immune cell infiltration 
patterns among the three CRC sample clusters in the TCGA 
cohort (Figure 2A, P<0.05). We found that Immunity-H samples 
had higher frequencies of CD8 T cell, M1 macrophage, and T 
follicular helper cell infiltration relative to Immunity-L samples, 
whereas they had lower frequencies of M0 macrophage, M2 
macrophage, NK cell, and CD4 resting memory cell infiltration. 
Immune checkpoints are regulators of the immune system, 
preventing it from indiscriminately attacking target cells. However, 
some cancers can shield themselves from attack by upregulating or 
engaging immune checkpoint molecules [34]. We also found that 
Immunity-H samples exhibited significantly higher expression of 
the immune checkpoint molecules CTLA4 and CD274 relative to 
Immunity-L samples in the TCGA database (Figure 2B). 

Figure 1: Expression profiles of the three CRC subtypes in the TCGA cohort and GSE42284. (A,B) Hierarchical clustering of CRC yields three 
stable subtypes (Immunity_L, Immunity_M, and Immunity_H) in the two different datasets. Stromal_score, Immune_score, and Tumor_puritywere 
evaluated by ESTIMATE .
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The relationship between CRC immune subtypes and 
MSI, MSS, and BRAF V600E status 

MSI tumors lack effective DNA mismatch repair mechanisms, and 
as such they mutate at much higher rates, leading to neo antigen 
expression [35]. CRC patients with metastatic disease have been 
shown to be more responsive to ICI if their tumors are MSI-H [36]. 
We found that the majority of Immunity-H samples were within 
the MSI group, whereas the Immunity-M and Immunity-L groups 
contained the majority of MSS samples (Figure 3A). KRAS and 
BRAF mutations are valuable clinical biomarkers used to guide 
CRC patient treatment [37]. In this study, we found that almost all 
patients with KRAS mutations yielded MSS samples that clustered 
in the Immunity-L subgroup, whereas the majority of samples with 
BRAF V600E mutations were MSI samples in the Immunity-H 
subgroup (Figure 3B).

Assessment of immune cell profiles in TMB high 

CRC samples

Tumors with a high TMB have been found to be more responsive 
to ICPI treatment independent of PD-L1 expression of MSI status 
[38]. We therefore sought to examine the immune cell profiles 
of TMB high CRC tumor samples using a TMB cutoff value of 
20 Mutations/Mb. We found that this TMB high sample subset 
incorporated a majority of the Immunity-H samples as well as a 
minority of the Immunity-M samples (Figure 4). These TMB high 
samples had higher expression of immune signatures consistent 
with CD8+ T cell infiltration, helper T cell infiltration, MHC class 
1 expression, cytolytic activity, Para inflammation, and type 1 IFN 
responses relative to other samples. In contrast, relative NK cell, 
iDC, and Mast cell levels were significantly lower in these TMB 
high samples. We found that survival outcomes additionally varied 
among our CRC immune subtypes in the TCGA and GSE24551 
datasets, with Immunity-H subtype patients having a better 
prognosis than patients of the other two subtypes (Figures 5A and 
5B).

Figure 2: Comparison of the immune cell infiltration levels and immune checkpoint’s expression between CRC subtypes.
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Characterization of the functional differences among 
CRC immune subtypes

In total, we compared the expression of 21,999 different mRNAs 
between Immunity-H and Immunity-L samples in our TCGA 
dataset (Table S1). We were thereby able to identify 971 DEGs (516 
downregulate, 455 upregulated; |FC| ≥2, P < 0.05). WGCNA was 
then utilized to identify a gene module in Immunity-H samples that 
was significantly associated with 237 of these DEGs. This module 
was then used to construct a PPI network that incorporated 116 
DEGs (confidence cut-off=0.90). Using Cytoscape 3.7.2 to explore 

this network, we identified 58 DEGs as hub genes (degree≥10), 
including LCK, GNGT2, CD3G, CCR4, and CCR5 (Figures 5C 
and 5D). When we conducted functional enrichment analyses 
based on these 58 hub genes, we found that they were significantly 
enriched in pathways including T cell activation, lymphocyte 
differentiation, and leukocyte cell-cell adhesion when comparing 
Immunity-H vs. Immunity-L samples (Figures 6A and 6 C). In 
addition, clear enrichment of chemokine signaling, cell adhesion 
molecules (CAMs), and hematopoietic cell lineages were observed 
(Figures 6B and 6D).

Figure 3: The relationship between CRC immune subtypes and MSI and MSS status

Figure 4: The relationship between CRC immune subtypes and TMB.
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Figure 5: Comparison of survival prognosis between CRC subtypes (log-rank test) in the (A) TCGA cohort and GSE24551and (C,D) WGCNA was 
utilized to identify a gene module in Immunity_H samples and a PPI network was constructed.

Figure 6: Identification of functions and pathways in Immunity_H vs. Immunity_L group.
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DISCUSSION

Given that only a limited number of CRC patients benefit from 
ICI therapy, it is essential that biomarkers of ICI efficacy be 
identified in order to guide appropriate treatment planning. At 
present, however, predicting ICI responses remains a major clinical 
challenge. Herein, we utilized ssGSEA scores for 29 immune-related 
gene sets in order to separate CRC samples from five datasets into 
three subtypes (Immunity-L, Immunity-M, and Immunity-H) via a 
hierarchical clustering approach.

Tumor immune subtyping can offer important insights into the 
TIME in CRC patients and may help guide immunotherapeutic 
interventions in these individuals. We found that samples of the 
Immunity-H subtype exhibited significantly higher immune and 
stromal scores as well as significantly lower tumor purity. These 
Immunity-H tumors were also “hot” from an immunological 
perspective, with higher levels of DC infiltration, macrophage 
infiltration, IFN signaling, inflammation, cytolytic activity, and 
CTLA4/CD274 expression. These Immunity-H patients therefore 
had more favorable clinical outcomes, and may be more responsive 
to certain immunotherapeutic interventions.

MSI-H tumors have been shown to be ideal candidates for 
treatment with specific immunotherapeutic agents. To date, there 
have been multiple trials conducted in MSI-H/dMMR metastatic 
CRC patients with previously-treated disease (KEYNOTE-164 [39], 
KEYNOTE-158 [40], and CheckMate-142 [9]), and these achieved 
objective response rates (ORRs) of 28%-52%, with 24%-59% 
progression-free survival (PFS) and 72%-76% overall survival (OS). 
While promising, these patients are a minority of the CRC patient 
population, with most patients having pMMR/microsatellite 
stable (MSS) tumors that are not responsive to immunotherapy. 
As such, novel treatment strategies are urgently needed to increase 
the immunogenicity of tumors in these patients. We found that 
MSI patient samples primarily clustered in the Immnity-H group, 
suggesting that patients meeting both of these criteria would likely 
be the most responsive to immunotherapy treatment.

Combination immunotherapy treatments have been suggested 
to prolong survival in melanoma patients with BRAF mutations 
[41], but further study is needed to understanding the relationship 
between specific mutations and anti-PD1 responses in CRC 
patients. In this study, we found that almost all tumors exhibiting 
KRAS mutations were MSS and clustered in the Immunity-L 
subtype, whereas the majority of tumors with BRAF V600E 
mutations were MSI-H tumors in the Immunity-H group. 
BRAFV600E are known to be more common in MSI-H tumors 
(38.9%) relative to MSI-low tumors (9.3%) [42]. Liao et al. found 
that oncogenic KRAS mutations can drive and immunosuppressive 
gene expression program via repressing the expression of IRF2, 
increasing CRC tumor resistance to ICI treatment [23]. This 
suggests that a combination of KRAS mutations and an Immunity-L 
gene expression profile are associated with poor immunotherapy 
responses, although further trials will be needed to validate this 
hypothesis.

TMB can be analyzed to predict the responsiveness of MSI-H 
metastatic CRC tumors to ICI therapy [36]. One study found 
that CRC patients with high TMB had a significantly longer OS 
than did patients with low TMB (hazard ratio [HR], 0.73 [95% 
CI, 0.57 to 0.95]; P=0.02) [43]. High TMB samples in the present 
study included the majority of samples in the Immunity-H group as 

well as some Immunity-M samples, with those in the former group 
being likely to be responsive to immunotherapy.

We identified LCK, GNGT2, CD3G, CCR4, and CCR5 as hub 
genes in our PPI network. CCR5 is able to promote macrophage 
polarization towards a more robust anti-tumor phenotype in 
those with hepatic CRC metastases [44], while LCK and CD3G 
can promote memory CD4+ T cell responses in the CRC TIME 
[45]. We also found that gene expression profiles associated with 
T cell activation, lymphocyte differentiation, and leukocyte cell-
cell adhesion were significantly enriched in Immunity-H samples 
relative to Immunity-L samples, as were chemokine signaling, 
CAMS, and the hematopoietic cell lineage. This suggests that 
tumors of the Immunity-H subtype were the most immunogenic.

CONCLUSION

Our results suggest that gene expression profiles can be used to 
cluster CRC patient samples into three immune subtypes. Our 
findings further suggest that patients with TMB high tumors that 
fall in the Immunity-H subtype as well as those with MSS tumors 
that fall in the Immunity-H or Immunity-M subtypes may be ideal 
candidates for anti-PD-(L)1 immunotherapy. In contrast, patients 
with KRAS mutations and/or those with Immunity-L subtype 
tumors are not likely to be sensitive to immunotherapy. While 
these results are promising, further large scale multi-center trials 
will be needed to establish the clinical value of using this immune 
subtyping strategy to guide the tailored immunotherapeutic 
treatment of CRC.
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