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Introduction
Breakwater is a structure generally, used in coastal protection works 

and also for creating tranquillity in basin in harbours. Over the year’s 
breakwater were of rubble mound weighing in tons. In the latter part 
of 19th century innovative structures like tetrapods, tripods and other 
interlocking blocks are also evolved. Considering the huge quantity of 
rock material required, in the beginning of 21st century caisson type of 
breakwater were thought off. One such breakwater is Quarter-circular 
Break Water (QBW), a new-type breakwater first proposed by Xie et 
al [1] on the basis of Semi-circular Break Water (SBW). The QBW is 
usually placed on rubble mound foundation and its superstructure 
consists of a quarter circular surface facing sea sides, a horizontal 
bottom and a rear vertical wall. The QBW structure is hollow, hence, 
the weight and materials required are less and it is more suitable 
where the foundation is relatively weak. The QBW is a prefabricated 
caisson, which can be properly designed for handling stresses and can 
be transported and placed with more precision at the desired location. 
Depending upon the purpose the QBW may be fabricated as emerged 
type structure, with and without perforation to dissipate the incident 
wave energy.

Literature Review
Jiang et al [2] studied the performance of QBW by comparing the 

hydraulic performances of QBW and SBW under similar hydraulic 
conditions. They conducted 2-dimensional (2D) vertical wave 
numerical model and physical model studies, and found that wave 
reflection of both QBW and SBW are closer to each other. They stated 
that the wave reflection coefficient (Kr) remains almost same with 
values less than 1.0 even when free board (hc) value becomes 2 to 3 
times incident wave height (Hi) for both types of breakwaters. During 
wave overtopping in submerged condition, they found high flow 
velocity and vortexes near the rear walls of QBW, which may be due 
to top sharp corner and sudden expansion of flow around QBW. They 
described that the flow fields in front of both QBW and SBW are similar 
in both in submerged as well as emerged conditions and this explains 
the closeness of reflection coefficient (Kr) values for both breakwaters.  
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Shi et al [3] studied the hydrodynamic performance of QBW 
under both regular and irregular wave conditions. Regular waves were 
generated by reciprocating wave paddle at constant speed whereas 
irregular waves were generated by frequency spectrum simulation with 
target spectrum of JONSWAP type. For analysing the wave reflection, 
two types of wave reflection coefficients were described by Shao [4] viz., 
(i) Kr that describes the whole effect of wave reflection by breakwater 
and (ii) Circular-surface reflection coefficient (Krc) that describes the 
reflective effect by circular surface on the adjacent flow field in front of 
the breakwater. He found that at the same relative freeboard height (hc/
Hi), the value of Kr was higher than Krc that indicates the entire reflective 
effect of QBW is stronger than that by circular surface on the adjacent 
flow field. To estimate the energy dissipation as the wave passes over 
the breakwater wave energy loss parameter (KEloss) was described. KEloss 
is the ratio of dissipated wave energy to the original gross wave energy 
within the process of wave structure interaction. Based on the results 
obtained from the study, it was found that the loss of wave energy for 
emerged breakwater is larger than that for submerged breakwater.

Hegde and Ravikiran [5] conducted experiments on physical model 
of QBW in 2D wave flumes to evaluate the reflection characteristics 
of QBW of different radii in different submergence conditions. The 
models were made of galvanized iron sheets and coated with cement 
slurry to simulate concrete surface. For finding the variation of Kr 
different graphs were plotted with the incident wave steepness (Hi/
gT2) (where, g is the gravitation and T is the wave period) for various 
submergence ratios (d/hc) and different ranges of (R/Hi) (where, d is the 
depth of water and R is the breakwater radius). For all values of d/hc and 
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R/Hi, they found that Kr increases logarithmically (best-fit) as incident 
wave steepness increases. The study revealed that whatever may be the 
depth, caisson radius, height of structure crest (from sea bed) steeper 
the waves the more will be the reflection from breakwater. Hafeeda 
[6] conducted experiments in a 2D monochromatic wave flume on a 
seaside perforated QBW model. He analyzed the experimental data by 
plotting the non-dimensional graphs of Kr (i.e., Hr/Hi) (where, Hr is 
the reflected wave height) for various values of R/Hi. He observed that 
the value of Kr increased with increase in wave steepness and when the 
free board (hc) increased then the value of Kr also increased. He found 
that when height of the structure (hs) increases, smaller height of the 
QBW portion of the caisson is exposed to waves, which is effect of the 
curvature is less pronounced that tend to lesser dissipation and more 
reflection.

Binumol et al  [7] conducted physical model studies of QBW with 
three different radii and S/D (spacing to diameter of perforations) ratio. 
Dimensional analysis was carried out to find the non-dimensional 
parameters such as incident wave steepness, depth parameter (d/gT2), 
height of structure, depth of water, wave run up (Ru/Hi), wave rundown 
(Rd/Hi), etc., using Buckingham’s π-theorem. The experimental data 
collected was analyzed by plotting the graph of dimensionless wave 
run up and dimensionless wave rundown for various values of wave 
steepness and different height of structure to the depth of water. 
They observed that the value of Ru/Hi increases with increase in wave 
steepness for all values of hs/d and d/gT2. This was because as wave 
height increases there is increase in wave energy and hence run up 
increases with increase in wave steepness. For all values of hs/d and 
d/gT2, the dimensionless wave rundown was found to decrease with 
increase in wave steepness for all values of hs/d and d/gT2 because as 
wave height increases there is increase in wave energy resulting in more 
run up and hence less rundown. Rd/Hi was also found to increase with 
the increase in the depth parameter (d/gT2) because at higher water 
depths, effect of curvature is more pronounced resulting in lower run 
up and hence more wave rundown. 

Balakrishna and Hegde [8] investigated reflection coefficient (Kr) 
and dissipation (or loss) coefficient (KL) for physical models of quarter 
circle caisson breakwater for different radii with constant S/D ratio. 
They observed that reflection coefficient was found to increase with 
wave steepness, which was similar to all earlier studies. Dissipation 
coefficient (KL) decreased with increase in wave steepness. The study 
revealed that as wave period decreases the value of loss coefficient 
decreases. The study also revealed that as hs/d increases, dissipation 
increases which is a reverse trend in the case of reflection, this trend is 
found to be true for all values of d/gT2 values.

Generally, computational intelligence techniques viz., Artificial 
Neural Network (ANN), adoptive neuro fuzzy interface system, 
support vector machine algorithm, genetic algorithm, etc., have been 
efficaciously proposed as an efficient tool for modelling and predictions 
in coastal engineering problems [9].  In the present study, ANN and 
Regression (REG) approaches are used for prediction of the variables 
considered for evaluation of hydrodynamic performance of QBW. 
In ANN, Multi layer Perceptron (MLP) and Radial Basis Function 
(RBF) networks are adopted for training the network data. Goodness-
of-Fit (GoF) test viz., Kolmogorov-Smirnov test statistic and Model 
Performance Analysis (MPA) viz., correlation coefficient, mean absolute 
error and model efficiency are applied for checking the adequacy of 
ANN and REG approaches to the observed (or experimental) data. This 
paper presents the study on evaluation of hydrodynamic performance 
of QBW using ANN and REG approaches with illustrative example.  

Methodology
ANN modelling procedures adapt to complexity of input-output 

patterns and accuracy goes on increasing as more and more data 
become available. Figure 1 shows the architecture of ANN that consists 
of input layer, hidden layer, and output layer [10].

From ANN structure, it can be easily understood that input units 
receive data from external sources to the network and send them to 
the hidden units, in turn, the hidden units send and receive data only 
from other units in the network, and output units receive and produce 
data generated by the network, which goes out of the system.  In this 
process, a typical problem is to estimate the output as a function of the 
input. This unknown function may be approximated by a superposition 
of certain activation functions such as tangent, sigmoid, polynomial, 
and sinusoid in ANN.  A common threshold function used in ANN 
is the sigmoid function (f(S)) expressed by Eq. (1), which provides an 
output in the range of 0≤f(S)≤1. 
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Where, Si is the characteristic function of ith layer, Ii is the input (I) 
value of ith layer, Oi is the output (O) value of ith layer, Wij is the synaptic 
weights between input layer (i) and hidden layer (j), N is the number 
of observations and M is the number of neurons (or units) of hidden 
layer [11].   

Theoretical description of MLP network  

MLP network is based on architecture with single hidden layer 
as shown in Figure 1. Gradient descent is the most commonly used 
training algorithm in MLP in which each input unit of the training data 
set is passed through the network from the input layer to output layer 
[12]. The network output is compared with the target output and output 
error (E) is computed using Eq. (2).  
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Figure 1: Architecture of ANN.
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Where, ∆Wij(M) is the weight increments between ith and jth layers 
during M neurons (or units) and ∆Wij(M-1) is the weight increments 
between ith and jth layers during M-1 neurons (or units). In MLP, 
momentum factor (α) is used to speed up training in very flat region of 
the error surface to prevent oscillation in the weight and learning rate 
(ε) is used to increase the chance of avoiding the training process being 
trapped in local minima instead of global minima.

Theoretical description of RBF network

RBF network is supervised and three-layered feed forward neural 
network. The hidden layer of RBF network consists of a number of 
nodes and a parameter vector called a ‘centre’, which can be considered 
the weight vector. In RBF, the standard Euclidean distance is used to 
measure the distance of an input vector from the centre. The design of 
neural networks is a curve-fitting problem in a high dimensional space 
in RBF [11]. Training the RBF network implies finding the set of basis 
nodes and weights. Therefore, the learning process is to find the best 
fit to the training data. The transfer function of the nodes is governed 
by nonlinear functions that is assumed to be an approximation of the 
influence that data points have at the centre. The transfer function of a 
RBF is mostly built up of Gaussian rather than sigmoid. The Gaussian 
function decrease with distance from the centre. The transfer function 
of the nodes is governed by nonlinear functions that is assumed to be an 
approximation of the influence that data points have at the centre. The 
Euclidean length is represented by rj that measures the radial distance 
between the datum vector 1 2( , ,... )MX X X X  and the radial centre 
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is the Euclidean norm and Φ( ) is the activation 

function. A suitable transfer function is then applied to rj to give
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Where jc is the centre (c) of the neuron in the hidden layer (j) and 
Φ (rj) is the response of rj and W0 is the bias term [13].

 Theoretical description of regression approach 

Number of regression models such as linear regression, auto 
regressive moving average and auto regressive integrated moving 
average are generally adopted for evaluation stationary data.  In the 
present study, as the available data is stationary, the basic requirement 
to develop the regression (REG) model is satisfied and hence used 
for prediction of the variables. The REG models for prediction of 
dependant variables (KL, Kr and Kt) using various independent variables 
are presented in Table 1.

In Table 1, the terms Φi (i=1, 2, 3…., 11) are regression coefficients 
and C1, C2 and C3 are constants. 

Goodness-of-Fit test

GoF test involving viz., Kolmogorov-Smirnov (KS) test statistic 
is applied for checking the adequacy of applying ANN and REG 
approaches to the series of observed data [14]. Theoretical description 
of the KS test statistic is as follows:

 ( ) ( )( )
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Where, Fe(Xi)=(i-0.35)/N is the empirical Cumulative Distribution 
Function (CDF) of Xi and FD(Xi) is the computed CDF of Xi by ANN 
and REG approaches.

Model performance analysis

The performance of ANN and REG approaches adopted in 
prediction of the variables (KL, Kt and Kr) is evaluated by Model 
Performance Indicators (MPIs) viz., Correlation Coefficient (CC), 
Mean Absolute Error (MAE) and Model Efficiency (MEF), and are 
given below: 
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Where, *X  is the average value of observed (or experimental) data 
and *X is the average value of predicted data [15]. The model with high 
CC, less MAE and better MEF is considered as best suited amongst 
ANN and REG approaches adopted in prediction of the variables used 
for evaluation of hydrodynamic performance of QBW.

Application 

In this paper, a study on comparison of hydrodynamic performance 
of QBW was carried out. The experimental data viz., depth of water (d), 
wave period (T), incident wave height (Hi),  transmitted wave height 
(Ht), reflected wave height (Hr), transmission coefficient (Kt), loss  
coefficient (KL), wave length (L), reflection coefficient (Kr), incident 
wave steepness (Hi/gT2), relative freeboard (hc/Hi) and relative wave 
height (Hi/d) collected at National Institute of Technology, Surathkal, 
is analysed by plotting the non-dimensional graphs of reflection 
coefficient, reflected wave height and incident wave height for various 
values of wave steepness. The values were used for prediction of QBW 
adopting ANN and REG approaches. 

Description of experimental setup

The study was conducted in the regular wave flume available in the 

Sl.
No.

Dependant 
variable

Independent
variable REG Model

1 KL
T, Hi, HT, Hr, Kr, Kt, Hi/d, 

L, Hc/Hi, Hi/gT2, Hi/gT2 (2) 

Φ1T+Φ2Hi+Φ3HT+Φ4Hr+Φ5Kr+Φ6Kt+
Φ7Hi/d+Φ8L+Φ9Hc/Hi+Φ10Hi/gT2+

Φ11Hi/gT2(2)+C1

2 Kr 
T, Hi, HT, Hr, KL, Kt, Hi/d, 

L, Hc/Hi, Hi/gT2, Hi/gT2 (2)

Φ1T+Φ2Hi+Φ3HT+Φ4Hr+Φ5KL+Φ6Kt+
Φ7Hi/d+Φ8L+Φ9Hc/Hi+Φ10Hi/gT2+

Φ11Hi/gT2(2)+C2

3 Kt
T, Hi, HT, Hr, KL, Kr, Hi/d, 

L, Hc/Hi, Hi/gT2, Hi/gT2 (2) 

Φ1T+Φ2Hi+Φ3HT+Φ4Hr+Φ5KL+Φ6Kr+
Φ7Hi/d+Φ8L+Φ9Hc/Hi+Φ10Hi/gT2+

Φ11Hi/gT2(2)+C3

Table 1: Description of REG Model.
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marine structures laboratory of the Department of Applied Mechanics 
and Hydraulics, National Institute of Technology Karnataka, Surathkal. 
The experiments were performed in wave flume with dimensions of 50 
m long, 0.74 m wide and 1.1 m deep. Out of 50 m, 42 m length has 
smooth concrete bed. It has a 6.3 m long, 1.5 m wide and 1.4 m deep 
chamber at one end, where, wave flap is hinged at the bottom generates 
waves. The flap is controlled by an induction motor of 11 kw, 1450 rpm 
and is regulated by an inverter drive, 0 to 50 Hz rotating with a speed 
range of, 0 to 1550 rpm. This facility is able to generate regular waves of 
0.08 to 0.24 m of periods 0.8 to 4 sec. 

A series of vertical asbestos sheets are spaced at about 10 cm 
distance from each other and kept parallel to the length of the flume 
to dissipate the generated waves by damping the disturbance caused 
by successive reflection and to smoothen them. The QBW model is 
placed in the flume 28 m away from the wave flap, above the rubble 
mound foundation (Figure 2). The slope used for the rubble foundation 
is 1:2. Three capacitance type wave probes were used for measuring the 
incident and reflected wave heights. The wave probes were placed at a 
distance of 4 m from the centre of the model. 

Results and Discussions
The determined optimum network architecture with model 

parameters obtained from MLP and RBF networks, and regression 
models was used for prediction of QBW. In ANN (using MLP and RBF 
networks), 75% of data was used for training (TRG) and 25% of data 
used for testing (TES) the experimental data. Similarly, in REG, 75% of 
data was used for calibration (CAL) and 25% of data used for validation 
(VAL) while developing the REG equations.  Statistical software, namely, 
SPSS (Statistical Package for the Social Sciences) is used to predict the 
hydrodynamic characteristics viz., KL, Kr and Kt of QBW using ANN 
and REG approaches. The experimental data was trained with MLP 
and RBF networks to determine the Optimum Network Architecture 
(ONA) for the variables viz., KL, Kr and Kt. The determined ONAs 
with model parameters obtained from MLP and RBF networks, and 
REG equations were used for prediction of QBW. The results obtained 
from ANN (using MLP and RBF networks) and REG approaches were 
presented in the following sections.

Prediction of KL, Kr and Kt using MLP 

The momentum factor (α) and learning rate (ε) were fixed as 0.6 
and 0.05 while optimizing the network architecture of MLP for KL, Kr 
and Kt. The network data was trained with ONA (i.e., 11-21-1) with 
one input layer with 11 units, one hidden layer with 21 hidden units 
and one output layer with one unit. The network was tested with model 
parameters for prediction of the variables (KL, Kr and Kt) to evaluate the 
hydrodynamic performance of QBW. 

Prediction of KL, Kr and Kt using RBF

By using the procedures of RBF, as described earlier, the 
experimental data was trained with model parameters to determine the 
ONAs of KL, Kr and Kt. The ONAs were determined as 12-7-1 for KL 

whereas 12-10-1 for Kr and 12-4-1 for Kt. The ONAs were further used 
to test the network data of the variables viz., KL, Kr and Kt.   

Prediction of KL, Kr and Kt using REG 

By using the procedures of REG approach, as described earlier, 
the REG equations for the dependant variable (s) in terms of the 
independent variables were developed and given as:

KL=(-0.625)T+(-0.022)Hi+(0.021)HT+(0.031)Hr+(-0.690)Kr+(-
1.829)Kt+(0.153)Hi/d+  (0.266)L+(0.011)Hc/Hi+(-0.022)Hi/gT2+(0.016)
Hi/gT2 (2)+2.291

Kr=(-0.396)T+(-0.007)Hi+(0.001)HT+(0.062)Hr+(-0.469)
KL+(-0.767)Kt+(-0.275)Hi/d+(0.196)L+(-0.002)Hc/Hi+(0.009)Hi/
gT2+(0.081)Hi/gT2 (2) +1.070

Kt=(-0.185)T+(-0.028)Hi+(0.025)HT+(0.011)Hr+(-0.431)KL+(-
0.266)Kr+(0.393)Hi/d+(0.076)L+(0.008)Hc/Hi+(0.104)Hi/gT2+(0.104)
Hi/gT2 (2) +1.120

Analysis based on GoF test

The KS test statistic values of ANN (using MLP and RBF networks) 
and REG approaches for the variables KL, Kr and Kt were computed 
and found to be varied between 0.125 and 0.210. These values were 
noted to be less than of its theoretical value of 0.221 at 5% level, and at 
this level, both ANN and REG approaches are found to be acceptable 
for prediction of the desired variables (KL, Kr and Kt). The predicted 
variables were used for evaluation of hydrodynamic performance of 
QBW.

Performance analysis based on MPIs

The model performance of ANN and REG approaches used in 
prediction of the variables (KL, Kr and Kt) was evaluated by MPIs and 
the results are presented in Tables 2 and 3. 

From Table 2, it could be noticed that the MEF obtained from MLP is 
relatively higher when compared with the corresponding values of RBF 
and REG. Also, from Table 2, it could be noticed that the percentage of 
MAE obtained from MLP is less than the corresponding values of RBF 
and REG. From Table 3, it may be noted that the CC values obtained 
from MLP for the predicted variables vary between 0.950 and 0.998. 
The time series plots of predicted values of the variables (KL, Kr and 
Kt) using MLP and REG together with observed data are presented in 
Figures 3 to 5. The scatter plots of observed and predicted values of the 
variables with model fit and R2 (coefficient of determination) values are 
presented in Figures 6 to 8.

Figure 2: A schematic diagram of experimental setup.

Vari-
ables

Computed values of MEF and MAE
MEF (%) MAE (%)

MLP RBF REG MLP RBF REG
TRG TES TRG TES CAL VAL TRG TES TRG TES CAL VAL

KL 96.3 98.8 58.8 89.9 92.6 95.8 1.6 1.2 6.8 3.5 2.6 2.3
Kr 90.9 97.7 71.7 78.7 92.0 94.6 1.6 0.9 3.0 2.7 1.7 1.5
Kt 97.3 99.5 66.7 86.2 96.5 96.7 0.9 0.5 3.7 2.7 1.2 1.5

Table 2: Values of MPIs for KL, Kr and Kt given by MLP, RBF and REG.

Variables
Computed values of CC

MLP RBF REG
TRG TES TRG TES CAL VAL

KL 0.981 0.994 0.769 0.956 0.962 0.980
Kr 0.950 0.968 0.836 0.677 0.956 0.945
Kt 0.986 0.998 0.825 0.959 0.982 0.983
Table 3: Values of CC for KL, Kr and Kt given by MLP, RBF and REG.
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Figure 3: Time series plots of observed and predicted values of KL.

Figure 4: Time series plots of observed and predicted values of Kr.

Figure 5: Time series plots of observed and predicted values of Kt.

From Figures 3 to 5, it can be seen that the predicted values of the 
variables (KL, Kr and Kt) using MLP network gives better performance 
than RBF and REG during testing period. From Figures 6 to 8, it can be 
seen that the R2 values obtained from fitted model using MLP for KL, Kr 
and Kt variables are 0.970, 0.926 and 0.980, which indicates that there is 

Figure 6: Scatter plots of observed and predicted values of KL.

Figure 7: Scatter plots of observed and predicted values of Kr.

Figure 8: Scatter plots of observed and predicted values of Kt.

a perfect fit between the observed and predicted variables. 

Analysis based on descriptive statistics

In addition to MPIs, the performance of ANN (using MLP and 
RBF) and REG approaches adopted in prediction of the variables (KL, 
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Kr and Kt) was analyzed through the descriptive statistics (i.e.,  Average, 
Standard Deviation (SD), Coefficient of Variation (CV), Coefficient 
of Skewness (CS) and Coefficient of Kurtosis (CK)) and the results 
are presented in Table 4. Based on the GoF test results using KS test 
statistic and MPA using MPIs, the study suggested that MLP is better 
suited amongst MLP, RBF and REG models adopted for prediction 
of the variables viz., KL, Kr and Kt, which are used for evaluation of 
hydrodynamic performance of QBW.

By using the values of the descriptive statistics of the KL, as given 
in Table 4, the percentage of variation on the average of predicted 
value using MLP for KL, with reference to average of observed value, 
is computed as 0.6% and 0.2% during TRG and TES respectively. For 
Kr, the values obtained from MLP during TRG and TES are found to 
be 1.9% and 1.3% respectively. Likewise, for Kt, it may be noted that the 
percentage of variation on the average of predicted value using MLP, 
with reference to average of observed value is computed as 0.2% and 
0.1% during training and testing.

Conclusions
The paper described the procedures involved in prediction of the 

variables viz., KL, Kr and Kt adopting ANN (using MLP and RBF) 
and REG approaches. These variables were used for evaluation of 
hydrodynamic performance of QBW. From the results of data analysis, 
the following conclusions were drawn from the study:

1)	 	Optimum MLP network architecture viz., 11-21-1 was used for 
training the network. The ONA of MLP with model parameters 
was used for testing the network data and prediction of variables

2)	 	Regression equations developed through REG approach was 
used for prediction of the variables. 

3)	 	KS test results supported the use of ANN and REG approaches 
used in determining the hydrodynamic characteristics 
parameters.

4)	 	GoF test results using KS test statistic and MPA using MPIs 

confirmed that the MLP is better suited amongst MLP, RBF and 
REG models adopted for prediction of the variables viz., KL, Kr 
and Kt.

5)	 	The percentage of MAE obtained from MLP is less than the 
corresponding values of RBF and REG during training (or 
calibration) and testing (or validation) for all three predicted 
variables. While testing the network (i.e, experimental) data, 
the MAE using MLP for the predicted variables KL, Kr and Kt 
were computed as 1.2%, 0.9% and 0.5% respectively.

6)	 	For KL, the values of CC and MEF given by MLP were computed 
as 0.994 and 98.8% respectively during testing period. Similarly, 
the values of CC and MEF were computed as 0.968 and 97.7% 
for Kr whereas 0.998 and 99.5% for Kt.

7)	 	The percentage of variation on the average of predicted value 
using MLP, with reference to average of observed value, was 
computed as 0.2% for KL, 1.3% for Kr and 0.1% for Kt while 
testing the network data. 
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Descriptive 
statistics

Observed MLP RBF REG

Data
points

(1 to 27)

Data
points
(28 to 
36)

TRG TES TRG TES CAL VAL

Dissipation (or loss) coefficient (KL)
Average 0.519 0.609 0.516 0.608 0.515 0.611 0.522 0.596

SD 0.134 0.128 0.129 0.135 0.119 0.095 0.129 0.133
CV (%) 25.8 21.0 25.0 22.2 23.0 15.5 24.8 22.2

CS -0.205 -0.789 -0.033 -0.651 -0.113 -0.852 0.068 -0.918
CK -1.139 -1.112 -1.386 -1.501 -1.108 -1.714 -1.760 -1.381

Reflection coefficient (Kr)
Average 0.154 0.079 0.151 0.078 0.154 0.081 0.153 0.085

SD 0.070 0.046 0.066 0.045 0.054 0.023 0.064 0.050
CV (%) 45.3 57.9 43.7 57.7 34.9 28.4 41.9 58.1

CS -0.110 0.537 0.491 0.666 0.535 1.166 0.138 0.349
CK 0.049 -0.430 -0.297 0.693 -0.104 2.177 -0.284 0.017

Transmission coefficient (Kt)
Average 0.823 0.771 0.821 0.770 0.814 0.767 0.823 0.778

SD 0.076 0.089 0.076 0.085 0.070 0.060 0.077 0.083
CV (%) 9.3 11.5 9.3 11.0 8.6 7.8 9.4 10.7

CS -0.329 0.602 -0.287 0.635 0.100 0.649 -0.355 0.608
CK -1.249 -1.238 -1.154 -0.949 -1.663 -1.836 -1.438 -1.687

Table 4: Descriptive statistics of predicated variables (KL, Kr and Kt) by MLP, RBF 
and REG.
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