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Abstract

The aim of the study was to investigate differences between sexes in time – dependent development of
atherosclerosis in apoE & eNOS – double knockout mice. At four time points, groups of female and male mice were
sacrificed and the size of atherosclerosis was measured by “cross section”. At the age of 2 months, there was no
difference between males and females. However, at the age of 4 months, the atherosclerosis was significantly
bigger in females than in males (55,616 ± 4,622 µm2 vs. 37,181 ± 4,142 µm2; p<0.05). At the age of 6 months, the
differences were even more pronounced (314,465 ± 19,351 µm2 vs. 108,277 ± 24,549 µm2; p<0.001). The same
tendency was present at the age of 12 months (488,356 ± 49,823 µm2 vs. 201,646 ± 43,886 µm2; p<0.001). We
describe for the first time the development of atherosclerosis in both sexes of apoE & eNOS – double knockout
mice, proving that as early as at age of 16 weeks, a substantial difference in the size of atherosclerosis is noted
between females and males, in favour of the females. This difference becomes more significant with the age of
mice. The possible mechanisms responsible for such differences require further investigation.
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Introduction
Nitric oxide (NO), released by the vascular endothelium in response

to various stimuli, including acetylcholine and shear stress of blood
flow plays an important role in endothelium-dependent vasodilation
[1-3]. It was shown, that in patients with coronary heart disease
arteries constrict, rather than dilate, in response to the acetylcholine, in
a phenomenon called endothelial dysfunction [4]. Several molecular
mechanisms have been proposed to explain such phenomenon, namely
deficiencies in substrate (L-arginine) or cofactors (e.g.,
tetrahydrobiopterin) for nitric oxide synthases (NOS), alterations in
membrane signalling, or enhanced, oxidative stress-dependent
degradation of NO [5].

Importantly, besides the effects on vascular tone, NO shows other
physiological activities, relevant to its antiatherogenic actions
including the inhibition of smooth muscle cell proliferation,
prevention of platelet aggregation, as well as inhibition of leukocyte
activation and adhesion [6-9]. Therefore, to study the interactions
between eNOS and atherogenesis mouse models of atherosclerosis,
such as apolipoprotein E (apoE) knockout (KO) mice [10,11], have
been combined with models of endothelial nitric oxide synthase
(eNOS) deficiency. It was demonstrated that mice lacking both eNOS
and apoE had significantly increased blood pressure, developed larger
atherosclerotic plaques and had more severe kidney damage than
apoE-deficient mice with an intact eNOS function [12-15].

Interestingly, apoE-KO mice develop gender specific differences in
the development of atherosclerotic changes in aorta, which typically
occur earlier and are bigger in female mice [16]. The reasons of this
have never been fully elucidated, however, apoE-KO mice have been
reported to show intriguing sex differences in the production of

important endothelial mediators, namely prostacyclin (PGI2) and
thromboxane A2 (TXA2) [17]. As many mutual influences between
vascular PGI2 and NO generation have been recognized [18,19] and
several mechanisms responsible for controlling NO generation seem to
be gender-specific [20,21] we aimed our study to investigate whether
the lack of eNOS-derived NO could influence the sex-related
differences in development of atherosclerosis in apoE-KO mice.
Therefore we compared the formation and structure of atherosclerotic
plaques in female and male apoE & eNOS – double knockout (DKO)
mice.

Materials and Methods

Animals and procedures
ApoE & eNOS – double knockout mice on B6.129P2 background

were created from apoE-knockout and eNOS-knockout mice by
Jackson Laboratory (Bar Harbor, Maine, USA) (project number
21536_BHSM). The apoE and eNOS PCR genotyping was performed
according to company protocols (http://jaxmice.jax.org/protocolsdb/)
(Figure 1). The mice were maintained on 12 h dark / 12 h light cycles
in air-conditioned rooms (22.5 ± 0.5°C, 50 ± 5% humidity), with not
constraint access to food and water. The mice were put on chow diet
made by Wytwornia Pasz Morawski (Kcynia, Poland). Then, at
different four ages (2 months, 4 months, 6 months and 12 months),
groups (n=4 each) of female and male mice were injected with 1000 IU
of fraxiparine (Sanofi-Synthelabo, France) into the peritoneum, then
were killed using a carbon dioxide chamber.

The blood was collected from the right ventricle. The right atrium
was incised and the heart was perfused by PBS through the apex of the
left ventricle, at a constant pressure of 100 mmHg, next, the heart was
dissected [22,23]. All animal procedures were approved by the
Jagiellonian University Ethical Committee on Animal Experiments.
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Figure 1: PCR genotyping of apoE & eNOS – double knockout mice. The left band shows PCR products characteristic for ApoE−/− (245 bp)
and wild-type (155 bp) mice. The right band shows PCR products for eNOS−/− (258 bp) and wild-type (337 bp) mice. M – marker.

Quantification of atherosclerosis
The heart with the ascending aorta were embedded in OCT

compound (CellPath, UK) and frozen immediately. 10 µm thick serial
sections were cut from the proximal 1 mm of the aortic root using a
standardized procedure [24,25]. For each heart, nine adjacent sections
were collected at 100 μm intervals starting at a 100 μm distance from
the appearance of the aortic valves. Then sections were fixed in 4%
paraformaldehyde, stained Oil red-O (Sigma-Aldrich, USA) and
examined under an Olympus BX50 (Olympus, Tokyo, Japan)
microscope. Pictures were taken using an Olympus Camedia DP71
digital camera. Total area of the lesion was measured in each slide
using LSM Image Browser 3 software (Zeiss, Jena, Germany). For each
mouse, a mean lesion area was calculated from nine sections what
reflects the cross-section area covered by atherosclerosis. The same
procedure was performed with Sirius red stained sections for collagen
measurements.

Immunohistochemistry staining of aortic roots
Sections were pre-incubated with 5% non-immunogenic goat

serum, with 2% fat-free milk, to block nonspecific binding of
antibodies (Abs). Incubations with primary antibodies: anti-α-smooth
muscle actin FITC-conjugated (α-SMA; dilution 1:800; Sigma-Aldrich)
and rat anti-mouse CD68 (dilution 1:800; Serotec, Kidlington, UK)
were performed overnight at room temperature in wet chambers.
Afterwards, goat anti-rat Cy3-conjugated antiserum (Jackson
ImmunoResearch, West Grove, PA) was diluted 1:800 and applied to
visualize rat Abs. Sections were analyzed using a fluorescence Olympus
BX50 microscope containing appropriate filter cubes to show Cy3
(red) and FITC (green) fluorescence. The pictures were taken with

Olympus Camedia DP71 digital camera. The total area occupied by
CD68-immunopositive macrophages and α-SMA-positive cells in each
section was measured using LSM Image Browser 3 software [26].

Plasma lipids
The plasma was separated by centrifugation at 1000×g at 4°C for 10

min and stored in –80° C until used. Total cholesterol, HDL-
cholesterol, LDL-cholesterol and triglycerides were measured with
commercially available kits (Roche Molecular Biochemical, USA).

Statistical analysis
The results are presented as mean ± SEM. The nonparametric

Mann-Whitney U test (cross section, Sirius red and IHC data) or t-test
(plasma lipidogram) were used for analysing the data. P<0.05 is
considered to be statistically significant.

Results
Oil red-O staining showed that females apoE & eNOS – double

knockout mice developed larger atherosclerotic lesions compared to
males. Differences between females and males appeared for the first
time at the age of 4 months: 59,808 ± 4,192 µm2 vs. 41,325 ± 4,143
µm2; p<0.05. At the age of 6 months, the differences were even more
pronounced: 314,465 ± 19,351 µm2 vs. 108,277 ± 24,549 µm2; p<0.001.
The same tendency was noted at the age of 12 months: 488,356 ±
49,823 µm2 vs. 201,646 ± 43,886 µm2; p<0.001 (Figures 2A and 2C).

Similarly, the total collagen content, determined by Sirius red
staining, was higher in females compared to males. At the age of 4
months, the collagen area was 49,110 ± 2,890 µm2 in females and
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39,228 ± 5,989 µm2 in males. At the age of 6 and 12 months, the
differences were bigger: 319,277 ± 5,722 µm2 vs. 110,608 ± 22,312 µm2

and 496,497 ± 55,474 µm2 vs. 186, 242 ± 46,463 µm2; p<0.05,
respectively (Figures 2B and 2D).

Figure 2: Representative micrographs showing Oil-red O stained
(A) and Sirius red stained (C) lesions at different ages (2, 4, 6 and 12
months) in apoE & eNOS – double knockout females and males
(magnification × 40). Atherosclerotic lesion area measurements (B)
and collagen area measurements (D) in the aortic root at four
different ages in apoE & eNOS – double knockout mice in females
comparing to males. Mean ± SEM, n=4, *p<0.05; **p<0.001. The
scale bar represents 1 mm.

There were also significant differences at the age of 6 and 12 months
between females and males in macrophages-occupied areas in the
lesion or in the content of smooth muscle cells in the fibromuscular
cap. The plaques in female 6 and 12 months old mice contained
significantly more macrophages and smooth muscle cells; however, the
composition of plaques (the ratio of CD68 to α-SMA) was not
significantly different between the sexes (Figure 3).

Figure 3: Representative immunohistochemical staining for
macrophages marker CD68 (A) and α-actin of smooth muscle
(SMA) (C) at four different ages (2, 4, 6 and 12 months) in apoE &
eNOS – double knockout females and males. Quantitative analysis
of CD68-positive macrophages (B) and SMA-positive smooth
muscle cells (D) at four different ages in apoE & eNOS – double
knockout mice in females, comparing to males. Mean ± SEM, n=4,
*p<0.05. The scale bar represents 1 mm.

The levels of total cholesterol, HDL-cholesterol, LDL-cholesterol,
TGs in blood did not differ significantly between the sexes (Table 1).

Age TCH
(mmol/L)

HDL
(mmol/L)

LDL
(mmol/L) TG (mmol/L)

2 months
♀ 11.25 ± 1.76 4.6 ± 1.91 8.45 ± 1.35 1.03 ± 0.05

♂ 10.85 ± 1.76 2.45 ± 0.05 6.35 ± 0.65 2.29 ± 0.67

4 months
♀ 12.9 ± 1.6 2.65 ± 0.05 8.8 ± 1.0 1.23 ± 0.02

♂ 13.85 ± 1.45 2.65 ± 0.25 9.6 ± 0.5 1.47 ± 0.13

6 months
♀ 13.9 ± 3.21 4.1 ± 1.5 10.25 ± 2.06 0.97 ± 0.03

♂ 16.3 ± 2.31 2.7 ± 0.1 10.35 ± 1.76 1.86 ± 0.04
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12
months

♀ 12.7 ± 0.3 4.5 ± 1.5 10.00 ± 1.2 0.66 ± 0.07

♂ 11.5 ± 0.8 5.0 ± 2.31 8.75 ± 0.85 1.02 ± 0.06

Table 1: Plasma level of total cholesterol, high-density Lipoproteins
(HDL), low-density lipoproteins (LDL) and triglycerides (TG) at four
different ages in apoE & eNOS – double knockout mice in females and
males.

Discussion
The antiatherosclerotic properties of endothelium-derived NO are

widely recognized [27] – e.g., its direct inhibitory action on vascular
smooth muscle cell proliferation has been described in eNOS–/– mice
[28,29]. Not surprisingly, the enhancement of activity of endothelial
isoform of nitric oxide synthase (eNOS) represents an interesting
target for the prevention or therapy of cardiovascular diseases [30].
Also recently, using this model we proved directly the necessity of the
presence of eNOS in endothelium for nebivolol to show its anti-
atherogenic potency [31]. On the other hand, it has been shown that
pharmacological inhibition of eNOS accelerated atherosclerosis in
rabbits [32] and in apoE-knockout mice [33]. In line with such
observations, it has been reported that the atherosclerotic changes
were shown to be more pronounced in apoE & eNOS – double
knockout mice as compared to single apoE-KOs [15,34]. Here, for the
first time we comprehensively describe the development of
atherosclerotic changes in both sexes of apoE & eNOS – double
knockout mice, proving that starting from the 16th week on, a
substantial sex-difference in size of plaques in aorta was noted in
favour of the female mice. Noteworthy, in our study the composition of
plaques (the ratio of CD68 to α-SMA) remained the same between
sexes. Our results are consistent with those reported by Knowles et al.
[14], showing that at single time point of 4 months of age the
atherosclerotic plaques measured by the cross-section method in the
proximal aorta of female apoE & eNOS – double knockout mice were
significantly larger than in male animals. In contrast, Kuhlencordt et al.
have not seen differences between the sexes in this model [15,34]. The
authors explained the differences between their results and those
obtained by Knowles et al. [14], by feeding mice with a high-
cholesterol diet and by using much less sensitive method of size
estimation of atherosclerosis (en face instead of cross section).
Importantly, in our study, atherosclerosis was assessed by the cross
section method and the mice were fed by chow diet.

The sex-differences in development of atherosclerotic plaques in
aortas of apoE-KO mice are documented quite extensively. Caligiuri et
al. [16] described for the first time that female apoE-knockout animals
had significantly greater atherosclerosis than male apoE-knockout
mice. She proved that atherosclerotic lesions were larger and also more
advanced in young female than in male “gene-targeted” mice. At the
beginning, it was a surprising observation, since in humans the
situation is the opposite. However, soon the findings of Caligiuri et al.
were confirmed in many publications [17,35-40]. Our study shows,
that similar sex-differences in development of atherosclerotic plaques
could be observed in apoE & eNOS – double knockout mice. The
question arises about the possible causes of sex-dependent differences
in the development of atherosclerosis in mice models. Despite the
long-term use in research of apoE-KO mice, the reasons of this
somehow surprising phenomenon, regarding in general opposite
tendency in humans, have never been fully elucidated. Apparently, the
differences in plasma lipids could not be the cause – in the majority of

studies the average levels of total cholesterol, LDL-cholesterol, HDL-
cholesterol and triglycerides did not differ significantly between male
and female apoE-KO mice; in one study, the plasma levels of total
cholesterol were even lower in female mice than in males despite more
pronounced atherosclerosis [17]. Importantly, in our hands lipid levels
did not differ between male and female apoE & eNOS – double
knockout mice either.

Smith et al. described intriguing differences in the production of
antiatherogenic prostacyclin (PGI2) vs. proatherogenic thromboxane
(TXA2): apoE-KO females fed on high-fat diet produced up to 15-fold
higher TXA2 and 50% lower PGI2 than males, as evidenced by urine
excretion of these prostanoids [17]. The authors speculate that such a
shift in the equilibrium between TXA2 and PGI2 constitutes a
proatherogenic risk factor in female apoE-KO mice. This could be a
case in apoE & eNOS – double knockout mice, as our preliminary
measurements of plasma levels of stable metabolites of TXA2 and PGI2
(TXB2 and 6-keto PGF1α, respectively) showed the same pattern (data
not shown). However, still, the molecular mechanisms responsible for
such sex-dependent differences in TXA2 and PGI2 generation either in
apoE-KO or in apoE & eNOS – double knockout remain unknown. We
cannot translate directly our results to humans. However, it forms an
important piece of information about precious, but very fragile apoE &
eNOS – double knockout mice model of atherosclerosis. There are
already only 6 publications describing this model, in comparison to
hundreds articles about apoE-knockout or LDLR-knockout mice. To
sum up, we have compared the development of atherosclerosis in both
sexes of apoE & eNOS – double knockout mice in several time points,
proving that from 16th week on, a substantial difference could be
noted in the size, but not in the composition of atherosclerotic changes
in aorta between females and males, in favour of the females. The
possible mechanisms responsible for such differences require further
investigation.
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