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Introduction
Protein-protein interactions are known to be central to most 

cellular functions. These assemblies govern the dynamics of cellular 
processes both temporally and spatially. High throughput studies 
have unrevealed an unexpected extended protein networks in various 
bacteria that challenge our understanding in terms of functionality [1]. 
A typical two component system consists of a histidine protein kinase 
containing a conserved kinase core and a response regulator protein 
containing a conserved regulatory domain. Extracellular stimuli are 
sensed by and serve to modulate the activities of the histidine kinase. The 
histidine kinase transfers a phosphoryl group to the regulator protein 
in a reaction catalyzed by the regulator protein. Phosphotransfer to 
the regulator protein results in activation of a downstream effector 
domain that elicits the specific response [2,3]. In an elaborated way 
we can say that, the ATP-dependent phosphorylation of histidine is 
generally regulated in response to environmental signals by a family 
of histidineprotein kinases. The phosphorylated aspartate is present 
within another variety of protein termed as response regulator which 
undergoes a phosphorylation- induced conformational change that 
serves to evoke a response [4]. Thus, there are two essential families of 
proteins that function together the sensory kinases and their associated 
response regulators.

Histidine Protein Kinases (HPKs) are a large family of signal-
transduction enzymes that auto phosphorylate on a conserved histidine 
residue. HPKs form two-component signaling systems together 
with their downstream target proteins, the response regulators, 
which have a conserved aspartate in a so-called ‘receiver domain’ 
that is phosphorylated by the Histidine protein kinase [5]. Response 
regulators of bacterial sensory transduction systems generally consist 

of receiver module domains covalently linked to effector domains. The 
effector domains include DNA binding and/or catalytic units that are 
regulated by sensor kinase-catalyzed aspartyl phosphorylation within 
their receiver modules. Most receiver modules are associated with three 
distinct families of DNA binding domains, but some are associated 
with other types of DNA binding domains with methylated chemotaxis 
protein demethylases or with sensor kinases [6].

Enterococci are gram-positive constituents of the normal human 
micro flora typically colonizing the intestinal tract and skin. However, 
these organisms are capable of causing disease as opportunistic 
pathogens, mainly in immune compromised patients. Normally, 
Enterococci are used as probiotics to improve the microbial balance of 
the intestine and to treat gastroenteritis in humans and animals. These 
bacteria probably now represent the greatest risk to human health 
of any bacterial species currently used for these purposes. General 
features of these organisms are hallmarks of their biology and may 
also contribute to their pathogenicity. Enterococci are distinguished for 
their ability to grow at temperatures ranging from 10 to 45°C and in 
6.5% NaCl or/and to tolerate acidic and alkaline growth conditions. The 
above observations raise the question of how Enterococcal physiology 
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has evolved to allow the organisms to sense environmental changes and 
respond to the various stimuli with adaptive behavior. Monitoring and 
adapting to changing environmental conditions is the key function of 
bacterial signal transduction, which is generally carried out by the so-
called two-component systems. Studies of enterococci have identified 
some general stress proteins; a global view of the Enterococcal signal 
transduction mechanisms has not been gained [7].

For understanding the function of a particular protein, it is usually 
useful to identify otherproteins with which it associates. This can be 
done by topological identification of specific proteins. To fulfill their 
biological activities in the cell, most proteins function in association 
with protein partners or as part of large molecular assemblies. Hence, 
the knowledge of the interactionscontext of a protein is crucial to 
understand its cellular functions. A comprehensive description of 
the stable and transient protein–protein interactions in a cell would 
facilitate the functional annotation of all gene products, and provide 
insight into the higher-order organization of the proteome. Several 
methodologies have been developed to detect protein–protein 
interactions, and some have been adapted to chart interactions at a 
proteome-wide scale [8].

Materials and Methods
The two component signal transducing protein-protein interactions 

network analysis has been carried out for ten different strains of 
Enterococcus faecalis such as Enterococcus faecalis V583, Enterococcus 
faecalis X98, Enterococcus faecalis CH188, Enterococcus faecalis D6, 
Enterococcus faecalis JH1, Enterococcus faecalis HIP11704, Enterococcus 
faecalis TX0102, Enterococcus faecalis DAPTO 516, Enterococcus 
faecalis TX0635, Enterococcus faecalis 62 and Enterococcus faecalis 
V583 [9-11]. This V583 strain was found to lack the cytolysin gene 
and a surface adhesin, Esp, that contributes to urinary tract infections. 
Mobile genetic elements make up one quarter of the genome [12].

Protein tracing

Proteins which are participating in Two Component Signal 
Transduction (TCST) of specific Enterococcus faecalis strains are 
traces out using NCBI protein database search where we have found 
number of proteins in a strain participating in TCST were selected and 
downloaded as fasta format.

Protein interactions, sequence and network visualization

The proteins of specific Enterococcus faecalis strains which are 
participating in the two component signal transduction were identified 
from NCBI/Protein database. The protein sequences have been 
downloaded and group of proteins of specific strain are uploaded to the 
STRING database for the identification of particular protein-protein 
interactions. STRING does not consider any specific splicing isoforms 
or posttranslational modifications, but instead represents each protein-
coding locus in a genome by a single protein. STRING imports protein 
association knowledge not only from databases of physical interactions, 
but also from databases of curated biological pathway knowledge. 
Functional partnerships between proteins are at the core of complex 
cellular phenotypes, and the networks formed by interacting proteins 
provide researchers with crucial scaffolds for modeling, data reduction 
and annotation. STRING is a database and web resource dedicated to 
protein-protein interactions, including both physical and functional 
interactions. It weights and integrates information from numerous 
sources, including experimental repositories, computational prediction 
methods and public text collections, thus acting as a Metadatabase 

that maps all interactions evidence onto a common set of genomes 
and proteins. The most important new developments in STRING 8 
over previous releases include a URL-based programming interface, 
which can be used to query STRING from other resources, improved 
interactionsprediction via genomic neighborhood in prokaryotes, 
and the inclusion of protein structures. Version 8.0 of STRING 
covers about 2.5 million proteins from 630 organisms, providing the 
most comprehensive view on protein–protein interactions currently 
available (Figure 1) [13].

STRING generates the protein interactions based on the 
Neighborhood, Gene fusion, Co-occurrence, Experiments, Databases, 
Text mining and Homology. Comparatively STRING gives score 
between 0.001 to 0.999. The STRING score is divided into Low 
Confidence (0.150), Medium Confidence (0.400), High Confidence 
(0.700) and Higher Confidence (0.900) which shows a perfect 
interactions network.

Analysis of host-pathogen protein-protein interactions

A pathogen causing an infectious disease generally exhibits 
extensive interactions with the host [14]. These complex crosstalks 
between a host and a pathogen may assist the pathogen in successfully 
invading the host organism, breaching its immune defense, as 
well as replicating and persisting within the organism. Systematic 
determination and analysis of Host-Pathogen Interactions (HPIs) 
is a challenging task from both experimental and computational 
approaches, and is critically dependent on the previously obtained 
knowledge about these interactions. 

The molecular mechanisms of Host-Pathogen Interactions (HPIs) 
include interactions between proteins, nucleotide sequences, and small 
ligands [15-18]. “Intra-species PPI”, where two proteins from the same 
species interact with each other and “Inter-species PPI” where two 
proteins from two different species interact. Host-pathogen protein–
protein interactionsplay a vital role in initiating infection are a subset 
of inter-species interactions. Identification and study of HPIs is critical 
for understanding molecular mechanisms of infection and subsequent 
development of drug targets (Figure 2).

The Host-Pathogen Interactions data of 10 strains of Enterococcus 
faecalis was generated using HPIDB (Host Pathogen Interactions 
Database).The two component signal transducing proteins are given for 
BLASTP in HPIDB full database BLAST with parameters of Blossom 62 

Extracting proteins of specific Enterococcus faecalis strain
which are participating in the Two Component Signal

Transduction

Transfering the Two Component proteins to STRING
Database for specific protein-protein interactions

Analysing the protein-protein interactions obtained from
the results

NCBI

STRING

RESULTS

Figure 1: Summarized Flow chart of step by step methodology applied for the 
prediction of protein-protein interactions through STRING database.
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Algorithm Matrix and E-Value of 10.0 [19]. The obtained PPI data was 
loaded in to Cytoscape 2.8.2 for the identification of protein-protein 
interactions of specific two component signal transducing proteins of 
different strains of Enterococcus faecalis.

Network topology analysis

The combined BLAST data has been generated from Host Pathogen 
Interactions Data Base 1.0. (Figure 3) [20] which was imported into 
the Cytoscape 2.8.2. When the blast data was imported taking E-value 
of the proteins and predicted partners as source interactions, bit score 
was taken as a target interactions and interactions type was given as 
default. The Cytoscape 2.8.2 generates a grid view of protein-protein 
interactions which are arranged according to their individual blast 
scores. The topological parameters of Enterococcus faecalis strains 
PPI networks were analyzed using Network Analysis plugin [21] 
of Cytoscape.2.8.2. The edges in all PPI networks were treated as 
undirected. The definition of network topological measure can be 
found in Network Analyzer Online Help (http: //med.bioinf.mpi-inf.
mpg. de/netanalyzer/help/2.6.1/index.html).

Fitting a line

Network Analyzer provides another useful feature - fitting a line 
on the data points of some complex parameters. The method applied 
is the least squares method for linear regression [22]. Network 
Analyzer gives the correlation between the given data points and the 
corresponding points on the fitted line. In addition, the R-squared 
value (also known as coefficient of determination) is reported. Fitting 
a line can be used to identify linear dependencies between the values 
of the x and y coordinates in a complex parameter shows the fitted line 
on a neighborhood connectivity distribution. The correlation between 
the data points and corresponding points on the line is approximately 
0.969. The R-squared value is 0.939 giving a relatively high confidence 
that the underlying model is indeed linear.

Fitting a power law

The degree distribution of many biological networks approximates 
a power law: DD (k) ~ kα for some negative constant α. Several studies 
have reported similar properties of the average clustering coefficient 
distribution [23] and the topological co-efficient [24]. Network 
Analyzer can fit a power law to some topological parameters. Please 
note that Network Analyzer uses the least squares method [22] and only 
points with positive coordinate values are considered for the fit. This 

approach fits a line on logarithmized data and may be inappropriate for 
supporting certain hypotheses. Network Analyzer gives the correlation 
between the given data points and the corresponding points on the 
fitted curve. In addition, the R-squared value (also known as coefficient 
of determination) is reported. This coefficient gives the proportion 
of variability in a data set, which is explained by a fitted linear model 
[25,26]. Therefore, the R-squared value is computed on logarithmized 
data, where the power-law curve: y = βxa is transformed into linear 
model: 1n y = lnβ + alnx.

Results and Discussion
We have generated protein-protein interactions networks in 

different strains of Enterococcus faecalis. We have observed several 
proteins which have not been participating in the interactions network. 
All the interactions are predicted under the parameters adjusted to 
highest confidence (0.900) and the numbers of predicted interactions 
are adjusted to not more than 10. The color schema of bands in the 
network denotes the specific parameters at which the proteins are 
interacting with one another.

Protein Interactions of Enterococcus faecalis 62

Enterococcus faecalis 62 contains the gelatinase gel E and serine 
proteinase sprE genes but displays a gelatinase-negative phenotype 
[27]. In this Protein-Protein Interactions data of Enterococcus faecalis 
62 we have figured out three signal transducing proteins which are not 
participating in the interactions. In figure 3 you can observe EF_3329 

The Two
Component Signal
Transduction
proteins are
uploaded to HPIDB
for the identification
of Host-Pathogen
Protein-Protein
interactions

Loading Host
Pathogen Protein
Protein
Interactions data
in to Cytoscape
2.8.2 for further
analysis

Analysis of PPI
Network with
the help of
Network
Analyzer Plug
in in Cytoscape
2.8.2

HPIDB

NETWORK
ANALYZER

CYTOSCAPE

Figure 2: Summarized Flow chart of step by step methodology applied for the 
prediction of protein-protein interactions through STRING database.

BIND MINT PIG GENERIF INTACT REACTOME

Protein  Interaction  Databases

Downloads and parses each database separately

Filters inter species interactions

Creates alist of taxon IDs of all organisms with  PPIs

Categorizes taxon IDs into two groups

Group I are the possible host
species; animals, plants.

Group II are the possible
Pathogen species, bacteria,

fungi, protist and virus

Includes interactions of organisms
between Group I and Group II

Removes redundant interactions and organize
the interactions into relational database

Figure 3: Flow chart representing the work flow of Host Pathogen Interactions 
Database.
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DNA-binding response regulator, EF_0960 endonuclease/exonuclease/
phosphatase family protein and EF_2630 transcriptional regulator 
which are not participating in the protein interactions network, 
whereas EF_2568 aminotransferase, class V and EF_2566 hypothetical 
protein are interacting with each other without interacting with the 
other network proteins. We have identified a sub network of EF_2218 
AraC family DNA-binding response regulator, EF_2219 sensor 
histidine kinase, EF_1822 response regulator, lytS sensor histidine 
kinase; member of the two-component regulatory system, agrCfs 
histidine kinase, putative, and lytT response regulator; Member of the 
two-component regulatory system lytS/lytT that probably regulates 
genes involved in cell wall metabolism (Figure 4).

Comparative network analysis of predicted protein 
interactions

The protein-protein interactions built for the 9 strains of 
Enterococcus faecalis are on the basis of protein-protein interactions 
of Enterococcus faecalis V583 which are available in the STRING 9.0 
database. According to the protein interactions networks predicted 
in 10 different strains of Enterococcus faecalis, we have figured out a 
proteinwhich is not participating in any protein interactions network 
except in protein interactions network of X98where we have identified 
the absence of the protein EF_3329 DNA-binding response regulator. 
Sub networks which are not at all having any interactions with the 
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Figure 4: Predicted Protein Interactions network generated from STRING database representing the protein networking of two component signal transducing proteins 
of Enterococcus faecalis 62.
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main network have been identified in 9/10 networks except in the 
Enterococcus faecalis D6where no sub networks are formed. Most of 
the sub networks consists of following proteins EF_2218 AraC family 
DNA-binding response regulator, EF_2219 sensor histidine kinase, 
EF_1822 response regulator, lytS sensor histidine kinase; member 
of the two-component regulatory system, agrCfs histidine kinase; 
putative, and lytT response regulator; Member of the two-component 
regulatory system lytS/lytT that probably regulates genes involved in 
cell wall metabolism which did not have any interactions with the main 
protein interactions network in all the 10 Enterococcus faecalis strains.

Topological analysis of Enterococcus faecalis host-pathogen 
PPI networks

We have calculated the topological parameters of PPI networks 
of Enterococcus faecalis using Network Analysis [21] plug in 
present in the Cytoscape.2.8.2. The obtained results consists of 
connected components, Network diameter, Network radius, Network 
Centralization, Shortest paths, Characteristic Path length, Average 
numbers of neighbors, Number of Nodes, Network Density and 
Network Heterogeneity. During the power law fit of Network analysis 
some data points has identified containing non-positive coordinates 
so, only points with positive coordinates are induced in the fit. Here 
we have comparatively analyzed the results of Network Analysis of ten 
Enterococcus faecalis strains.

Host-Pathogen protein interactions analysis of Enterococcus 
faecalis 62

The Network analysis data of Enterococcus faecalis 62 contains 
connected components 20, Network diameter is 6, Network radius 
is 1, Network Centralization is 0.118, Shortest paths are 1796 (10%), 
Characteristic Path length is 2.606, Average numbers of neighbors are 
1.712, Number of Nodes are 132, Network Density is 0.013 and Network 
Heterogeneity is 1.311. In the graph of Node Degree Distribution 
(Figure 5A) the number of proteins with a given link (k) in the protein 
interactions network of Enterococcus faecalis 62 follows a fitted line y = 
a+bx (a) 23.053, (b) -1.849. Correlation is 0.377, R2 = 0.142 and power 
law y = axb (a) 23.639, (b) -1.410. Correlation is 0.944, R2 = 0.685 for 
the power law fit. The Topological Co-efficient (Figure 5B) was plotted 
against the number of links. The topological coefficient with a given 
link (k) in the Enterococcus faecalis 62protein interactionsnetwork 
follows a same fitted line (a) 0.528, b) -0.036. Correlation is 0.884.

R2 = 0.781 and power law (a) 0.973, b) -0.918, Correlation = 0.987, 
R2 = 0.929 and for the Neighboring Connectivity Distribution (Figure 
5C) (a) 4.002, b) -0.252, Correlation = 0.495, R2 = 0.245 for fitted 
line and for power law fit (a) 4.420, (b) -0.582, Correlation = 0.831, 
R2 = 0.398. Stress Centrality Distribution (Figure 5D) (a) 42.846, (b) 
-0.355, Correlation = 0.325, R2 = 0.106 for fitted line and for power law 
fit (a) 2.286, (b) 0.370, Correlation = 0.958, R2 = 0.931. The stress of a 
node n is the number of shortest paths passing through n. The stress 
distribution gives the number of nodes with stress s for different values 
of s. The values for the stress are grouped into bins whose size grows 
exponentially by a factor of 10.The Betweenness centrality distribution 
(Figure 5E) was built as (a) 0.282, b) 0.489, Correlation = 0.346, R2 = 
0.236 for the power law fit, closeness centrality distribution (Figure 5F) 
(a) 0.486, b) 0.154, Correlation = 0.218, R2 = 0.051 for power law fit.

The correlation and R-Squared values of power law fit showed a high 
fit when compare to the standard (Power law perfect fit Correlation = 
1.000 and R-Squared = 1.000) in Topological Co-efficient (Correlation 
= 0.987, R2 = 0.929) and Node Degree Distribution (Correlation = 

0.944, R2 = 0.685). The interactions analysis also has showed shortest 
paths 1796 (10%). The above all parameters prove that the protein 
interactions network of Enterococcus faecalis 62 is perfectly fit.

Comparative network analysis of host-pathogen protein 
interactions

The two component signal transduction host-pathogen protein 
interactions network analysis of 10 different Enterococcus faecalis 
strains have yielded us antithetic statistical data containing Node degree 
distribution, Topological coefficients, Neighborhood connectivity 
distribution, Stress centrality distribution, Betweenness centrality and 
Closeness centrality. Here we have given the compared statistical data 
analysis.

Network parameters

The network parameters have been generated by undirected network 
analysis. Network parameters of 10 variant Enterococcus faecalis strains 
have been comparatively analyzed (Table 1). The network parameters 
contain Connected Components, Network Diameter, Network Radius, 
Network Centralization, Shortest Paths, Characteristic Path Length, 
Average Numbers of Neighbors, Number of Nodes, Network Density 
and Network Heterogeneity. Enterococcus faecalis TX0635 shows high 
number of connected components (Table 1)(Figure 6) compared to 
other strains of Enterococcus faecalis. Network diameter of Enterococcus 
faecalis CH188 is high (Figure 7C), Network radius of all the strains 
is same. Network Centralization of Enterococcus faecalis HIP11704 is 
higher (Figure 7A).

Shortest paths

Shortest paths are high in Enterococcus faecalis CH188, 
Characteristic Path Length is high in Enterococcus faecalis CH188 
(Table 1)(Figure 7E), Average Numbers of Neighbors are more in 
Enterococcus faecalis X98 (Table 1)(Figure 7G), Number of Nodes 
are high in Enterococcus faecalis X98 (Table 1)(Figure 7B), Network 
Density is high in Enterococcus faecalis D6 and Enterococcus 
faecalisV583 (Table 1)(Figure 7D)and Network Heterogeneity is high 
in Enterococcus faecalis TX0102 (Table 1)(Figure 7F).

Node degree distribution

The correlation value of Enterococcus faecalis X86 is comparatively 
high (Supplementary Table 1) whereas Enterococcus faecalis TX0635 
gave a peak value in the comparison of R- Squared values under the fitted 
line algorithm (y = a+bx). In the Fitted Power Law Y = axb correlation 
value of Enterococcus faecalis X86 is high whereas Enterococcus faecalis 
CH188 is high in the comparison of R- Squared values (Supplementary 
Table 2).

Topological coefficients

The correlation and R- Squared values of Enterococcus faecalis 
TX0102 (Supplementary Table 3) are high compared to the other 
strains of Enterococcus faecalis in the fitted line algorithm (y = a+bx). 
Compared to the values of all other Enterococcus faecalis strains 
Correlation and R-Squared values of Enterococcus faecalis HIP11704 
showed a highest fit of network (Supplementary Table 4).The 
topological coefficient fitness is considerably high only which the 
protein interactions network is highly linked giving a highest fit value 
in proteins interacting in a network.

Neighborhood connectivity distribution

The correlation and R- Squared values of Enterococcus faecalis 
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Figure 5: Topological properties of Enterococcus faecalis 62 PPI Network analyzed from Cytoscape 2.8.2.
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CH188 (Supplementary Table 5) are high in the comparison of fitted 
line algorithm (y = a+bx). But the values are not significant due to the 
low value ratio. When the fitted power law (Y = axb) was applied to the 
neighborhood connectivity distribution Enterococcus faecalis CH188 
(Supplementary Table 6) showed a higher Correlation and R-Squared 
values compared to the other Enterococcus faecalis strains. Compared 
to the fitted power law (Y = axb) standard (Power law perfect fit 
Correlation = 1.000 and R-Squared = 1.000) the higher values which 
were observed during comparative analysis are low.

Stress centrality distribution

In the stress centrality distribution of network analysis, Correlation 
and R- Squared values of Enterococcus faecalis TX0635 (Supplementary 
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Figure 6: Pie chart representing the connected components of 10 Enterococcus 
faecalis strains.
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Table 7) are high in the comparison of fitted line algorithm(y = a+bx). 
But the values are not significant due to the low value ratio. When the 
fitted power law (Y = axb) was applied to the stress centrality distribution 
Enterococcus faecalis DAPTO516 (Supplementary Table 8) showed 
a higher Correlation and R-Squared values compared to the other 
Enterococcus faecalis strains. Compared to the fitted power law (Y = 
axb) standard (Power law perfect fit Correlation = 1.000 and R-Squared 
= 1.000), the higher values which were observed during comparative 
analysis are high and shows a perfect fit of network. Compared to the 
topological coefficients fitted power law (Y = axb) values the stress 
centrality distribution values are a bit less but considerable for a high 
network fit.

Betweenness centrality distribution

The correlation and R- Squared value of Betweenness Centrality 
are very low when compared with the standard (Power law perfect 
fit Correlation = 1.000 and R-Squared = 1.000). Enterococcus faecalis 
D6 (Supplementary Table 9) showed a high correlation point 
where as Enterococcus faecalis 62 showed a higher R-Squared value 
when compare with the correlation and R-squared values of other 
Enterococcus faecalis strains.

Closeness centrality distribution

Closeness centrality is a measure of how rapidly information 
spreads from a given node to other reachable nodes in the network. The 
closeness centrality distribution of the Enterococcus faecalis TX0635is 
high (Correlation = 0.431, R-Squared = 0.181) (Supplementary Table 
10) this shows that highly connected proteinsin the network have a 
pronounced ability to spread information in the network.The same 
tendency also exists in other strains,but less when compared with the 
Enterococcus faecalis TX0635 protein interactions network. Nodes with 
high closeness centrality have potential significance for responding 
to external perturbations and for maintaining network stabilization. 
This may be part of the explanation why the highly connected “hub” 
proteins usually play essential roles in cell processes [28].

Conclusion
The prevailing study presents the entire protein-protein 

interactions of two component signal transducing proteins where 
we have comparatively analyzed protein-protein interactions of ten 
Enterococcus faecalis strains. All interactions of proteins which are 
participating in the two component signal transduction of Enterococcus 

faecalis has been predicted using STRING database. Host-Pathogen 
protein interactions have been identified and the Host-Pathogen 
interactions networks have been analyzed. The two component signal 
transducing proteins formed a highly linked network. The protein 
interactions which we have generated are useful for the studies of drug 
targeting. The protein-protein interactions information was connected 
to the pathogenic protein secretion pathway and gene regulation. These 
results will serve as a unique resource for further dissection of signal 
transduction and infection mechanisms in Enterococcus faecalis, as well 
as for the development of novel drugs.
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