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Abstract
In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following 

Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the 
Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the 
Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number 
of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ 
(lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system 
with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the 
claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is 
challenged.

Comments on the Extensivity of the Boltzmann Entropy
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Introduction
Thermodynamics describes a physical system in a given state from a 

macroscopic point of view with extensive and intensive state functions. 
Extensive state functions such as the volume V, the number of particles 
N, and the entropy Std are proportional to the size of the system (i.e., 
the amount of material) while intensive state functions such as the 
temperature T and the pressure p do not scale with the system size. 
These definitions may be best described by the doubling of a system by 
merging the original system with an equal system. Since in the absence 
of surface effects and interacting effects between the two subsystems 
the extensive state functions are proportional to the size of the system 
they will double, while the intensive state functions will not change 
since they are independent of the system size. Obviously, the statistical 
mechanics-based microscopic descriptions of these thermodynamic 
quantities must also obey their extensive or intensive character at least 
under the conditions of the thermodynamic limit defined by N→∞ (and 
at constant density = N

V
ρ ), at which statistical mechanics is believed to 

approximate thermodynamics [1]. Thus, the Boltzmann entropy S, 
which is at the heart of statistical mechanics, must be extensive at least 
at the thermodynamic limit and under idealized conditions such as 
absence of surface effects and interacting effects of the two subsystems as 
typically exemplified by the ideal gas. Following Gibbs and Boltzmann, 
the Boltzmann entropy S is a measure of the number of accessible micro-
states of the system of interest in its thermodynamic equilibrium. For a 
micro canonical ensemble the Boltzmann entropy is given by S=kBlnW 
with kB the Boltzmann constant, and W the number of accessible 
micro-states [2,3]. Although it is usually stated in textbooks that for 
a system with N indistinguishable particles the Boltzmann entropy 
at the thermodynamic limit gets extensive after resolving the Gibbs 
paradox by scaling down the number of micro-states W by N! to take 
into account the indistinguishability of the particles, it is noteworthy 
to mention that this statistical mechanics approach requests the use of 
the Stirling approximation lnN!=NlnN – N [4-8]. It has been noted that 
the term N! within the natural logarithm poses potential issues on the 
Boltmann entropy [9-11] yielding alternative descriptions on entropy 
such as the “thermal” and “ configurational” views [10], introducing 
the concept of an entropy density [1,10,12,13], or even redefining the 
entropy [9,14]. Importantly, as we shall see for limN→∞ (lnN! – NlnN 
+ N) )= ∞  [10,11,15], which means that at the thermodynamic limit
this form of the Stirling approximation can not be used to prove the
extensivity of the Boltzmann entropy. The consequence is that the

Boltzmann entropy, as shown in the following for the ideal gas and 
other simple systems, is in general not extensive and thus not an 
extensive state function irrespective on the number of particles N 
present. The scaling down of W by N! solves in large extent the Gibbs 
paradox, but it does not bring extensivity even at the thermodynamic 
limit. Since however thermodynamics requests entropy to be an 
extensive state function, the Boltzmann entropy is challenged to be 
a microscopic description of its thermodynamic analog. This finding 
may revitalize the long standing objections on Boltzmann entropy such 
as the Loschmidt and Zermelo’ s reversal and reoccurrence objections 
[16,17] and may ask for alternative derivations [18,19].

After a short review on various Stirling approximations and the 
Boltzmann entropy, textbook examples of the Boltzmann entropies 
and their extensive character for an ideal gas, as well as a primitive 
real gas system are calculated with and without the use of two different 
Stirling approximations, followed by the calculation of the extensivity 
of the Boltzmann entropy for N particles distributed in M states, ended 
thereafter by a discussion and a conclusion.

Theory
The Stirling approximations

The Stirling approximations [4,20] give an approximate value 
for the factorial function N!. The most often form used for statistical 
mechanics is given by 

!=lnN N lnN N− 			 (1)

It corresponds to the first term of the Stirling’s series given by

3
1 1 1! ( ) (2 ) ...
2 12 360

≈ − + + − +lnN N lnN N ln N
N N

π 	   (2)

The factorial function N!. can also be described by the double 
inequality
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1/2 1/(12 1) 1/2 1/(12 )2 < !< 2+ − + + + − +N N N N N NN e N N eπ π 	                 (3)

A better approximation is given by

1! (2 )
3

N NN N N eπ −≈ + 				                   (4)

In the following some of the properties of Stirling’s approximation 
relevant for statistical mechanics are reviewed.

If the standard Stirling approximation equation 1 is used, for a N>100 
the relative deviation of the right hand from the left hand side is smaller 
than 1% and decreases with larger N. While the relative deviation for 
limN→∞ →0 it is interesting to note that the absolute deviation is infinite, 
i.e., limN→∞ (lnN! – NlnN + N)=∞. This is numerically exemplified 
by Figure 1 and by the evaluation of the second term in the Stirling 
series, which can be used to estimate the deviation. For N→∞ the term 
1 (2 )
2

ln Nπ  increases logarithmically to infinity as observed in Figure 1.

In contrast, using the first two terms of the Stirling series
1! ( ) (2 )
2

≈ − +lnN N lnN N ln Nπ 	  	  	              (5)

the error propagates with the third term in the Stirling series 
1

12N
, and thus for N→∞ the absolute error is decreasing proportionally 
towards 0. It is therefore evident, that to approximate N! equations 4 or 
5 should rather be used than equation 1.

The Boltzmann entropy 

The second law of thermodynamics states that the entropy Std 
(note, td is used for distinguishing the thermodynamic entropy from 
the Boltzmann entropy) of an isolated system increases over time until 
the system is in its thermodynamic equilibrium. The term entropy Std 
goes back to Clausius [21] who tried to design and understand “ heat 
engines”, which are cyclic machines for the conversion of heat Q into 
useful work, and found when averaged over many cycles that for an 
irreversible machine =∆

∆ tdQ S
T >0. The entropy is thereby an extensive 

state function as demonstrated by Carnot by studying the cyclic Carnot 
process [5]. Entropy exerts its presence also by being part of the total 
free energy. For example for an ideal gas the Gibbs free energy is given 
by G=U+pV – TStd with U the inner Energy, p the pressure, V the 
volume, and T the temperature.

Following the systematic formulation of statistical mechanics 
by Gibbs and Boltzmann, the Boltzmann entropy S is a measure of 
the number of accessible micro-states of the system of interest in its 
thermodynamic equilibrium. For a micro canonical ensemble the 
Boltzmann entropy is given by

= WBS k ln 	 				                 (6)

with kB the Boltzmann constant, and W the number of possible 
micro-states that describe the same macro-state. The statistical 
mechanics argument is sound, that a system has the tendency to evolve 
towards its most probable state, which is the equilibrium state.

The Boltzmann entropy is not strictly extensive in the most 
simple description of the ideal gas

Let us consider a diluted, ideal gas in two independent boxes 
(i=1,2) both with M sites and N undistinguishable particles each (M 
>> N). For simplicity each site may be occupied with more than one 
particle. It is the attempt to check for this system the extensivity of the 
Boltzmann entropy, i.e., whether the entropy of the two boxes together 
is the sum of the entropies of the individual boxes. Following Gibbs 
(after resolving the Gibb’s paradox) [8] for each box the number of 

states possible is

	 W =
!

N

i
M
N

				                (7)

while for the two boxes together it is

	
2

1 2
(2 )W =
(2 )!

NM
N+ 				                      (8)

because the number of sites as well as the number of particles 
doubled. The term N! is necessary to account for the indistinguishability 
of the gas molecules. In order to show the extensive nature of the 
entropy, the entropy of the combined system given by S1+2 must be the 
sum of the entropies of the individual system 2*Si. With other words the 
following difference must be 0

1 2 1 2 1 2 1 1 2
2

1

= ( ) = 2 = W

(2 )2 W = ( 2 )
(2 )! !

B
N N

B B

S S S S S S k ln
M Mk ln k ln ln
N N

+ + +∆ − + −

− −
                                              (9)

= (2 [2 ] [(2 )!] 2 2 !)∆ − − +BS k N ln M ln N N lnM lnN                       (10)

Using the Stirling approximation of equation 1 as is done usually in 
text books, the above expression can be simplified to

(2 [2 ] 2 2 2 2 2( ))∆ ≈ − + − + −BS k N ln M N ln N N N lnM NlnN N              (11)

	 = (2 [2 ] 2 2 2 2( )Bk N ln M N ln N N lnM N lnN− − +

(2 [2 / ] 2 2 / ) = 0BS k N ln M M N ln N N∆ ≈ −                                    (12)

Hence, with the use of the simplified Stirling approximation 
(equation 1) the Boltzmann entropy is extensive. Actually with this 
derivation the Boltzmann entropy appears to be extensive irrespective 
to the number of particles N. The thermodynamic limit is however 
usually propagated in order to validate the use of the Stirling 
approximation. But, as shown above, for N→∞ the absolute error of 
the Stirling formula of equation 1 increases logarithmically to infinity, 
while only the relative error goes to 0. Since entropy is not a relative 
entity the Stirling approximation of equation 1 can not be used.

This finding is further demonstrated in the following. If the Stirling 
approximation is not used

2 2 2

2 2

2 2

(2 ) (2 )= ( ) = (
(2 )! ( !)

(2 )! (2 )!) = (2 2 )
( !) ( !)

N N N

B B N

B

M M MS k ln ln k ln
N N M

N Nln k N ln ln
N N

∆ −

− −

                                (13)

ln
 ( 

N
 !)

 - 
 N

 l
n
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Figure 1: The function lnN! – NlnN + N is shown for N = 1..100.
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The quantitative plot of this equation (Figure 2) shows that 

ΔS increases with N highlighting that the Boltzmann entropy is 
not extensive neither for small number of particles N nor at the 
thermodynamic limit.

This problem can be demonstrated also by using the first two terms 
of the Stirling series (equation 5) for which the absolute error decreases 
proportionally with N and thus vanishes at the thermodynamic limit 
(see above). By using this version of the Stirling approximation the 
extensive nature of the Boltzmann entropy can be checked by

	 2

2

(2 ) 1= ( 2 ) (0 (2 2 )
(2 )! ! 2

2 1 4 1(2 )) = ( = ( )
2 2 (2 ) 2

N N

B B

B B

M MS k ln ln k ln N
N N

Nln N k ln k ln N
N

π

ππ π
π

∆ − ≈ −

+ − +
  (14)

which at the thermodynamic limit

=Nlim S→∞∆ ∞  				               (15)

 This finding disproves again that the Boltzmann entropy for the 
given example of an ideal gas with undistinguishable structureless 
particles is an extensive state function neither for small number of 
particles nor at the thermodynamic limit.

The finding does not change if again another approximation for N! 
is used (equation 4) with

1 1! [(2 ) ]
2 3

lnN ln N N lnN Nπ≈ + + − 	                              (16)

 yielding 
2

2 2

(2 ) 1 1= ( 2 ) (0 [(4 ) ]
(2 )! ! 2 3

1(4 )2 1 1 3[(2 ) ] = [ ]12 3 2 (2 )
3

N N

B B

B

M MS k ln ln k ln N
N N

N
ln N k ln

N

π

π
π

π

∆ − ≈ − +

+
+ + −

+

              (17)

2

1(4 )1 3= [ ]12 (2 )
3

B

N
k ln

N π

+
−

+
			                 (18)

which at the thermodynamic limit (Table 1).

=→∞∆ ∞Nlim S 	  			               (19)

In summary, by calculating the Boltzmann entropy of the most 
simple model of an ideal gas it is concluded that the Boltzmann entropy 
is not strictly extensive, neither in a system with a small number of 
particles N nor at the thermodynamic limit.

The Boltzmann entropy is not strictly extensive for the 
“excluded-volume” gas model

Here, it is demonstrated that the Boltzmann entropy is also not 
extensive for a more accurate model of a gas that takes into account 
that two particles cannot overlap each other. This model is also 
called the “excluded-volume” model or the lattice gas model. We 
still consider two independent boxes (i=1,2) both with M sites and N 
undistinguishable particles in each box. The request of the excluded 

volume that no site can be occupied by more than one particle 
restricts the number of micro states as follows: The first particle can 

be in M sites, the second has only M – 1 choices to be located, the third 

M – 2 resulting in !( 1)( 2)...( 1) =
( )!

MM M M M N
M N

− − − +
−

possible micro states. 
Together with the term N! which addresses the over counting due to 
the indistinguishability of the particles (i.e., the Gibbs paradox) the 
number of micro states that describe the macro state is given by

!W =
( )! !i

M
M N N− 				                (20)

while for the two boxes together the number of micro states is given 
by

1 2
(2 )!W =

(2 2 )!(2 )!
M

M N N+ −
	                                                                  (21)

 because the number of sites as well as the number of particles 
doubled.

In order to check the extensive nature of the Boltzmann entropy, 
the entropy difference between the combined system given by S1+2 and 
the sum of the entropies of the individual systems 2*Si is calculated:

Δ
S

 [k
B
] 

3.0 
 
 
 
2.5 

 
 
 
2.0 

 
 
 
1.5 

 
 
 
1.0 

 
 
 
 

0 20 40 60 80 100 
N 

Figure 2: The graph of equation 13 with 2

(2 )!= (2 2 )
( !)B

NS k N ln ln
N

∆ −  is 
shown for N=1..100.

Approximations for n! ( , )M NΩ

!

NM
N

!
( )! !

M
M N N−

!n  ∞ ∞ for M≠N

1
22

n nn eπ
+ −

 
∞ ∞ for M≠N

n nn e−
 0 0

nn  0 0

Table 1: Limit of ΔS as N approaches infinity at constant ratio 
M
N

 
( = (2 ,2 ) 2 ( , ))S ln M N ln M N∆ Ω − Ω .
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1 2 1 2 1 2 1 1 2 1= ( ) = 2 = W 2 W

(2 )! != ( 2 )
(2 2 )!(2 )! ( )! !

B B

B

S S S S S S k ln k ln
M Mk ln ln

M N N M N N

+ + +∆ − + − −

−
− −

  (22)

Rewriting equation 22 results in

(2 2 2 (2 2 ) (2 2 ) (2 2 )∆ ≈ − − − − + −BS k M ln M M M N ln M N M N (23)

 By applying the usually used Stirling formula of equation 1 to each 
of the terms we get

(2 2 2 (2 2 ) (2 2 ) (2 2 )∆ ≈ − − − − + −BS k M ln M M M N ln M N M N         (24)

2 2 2 2 2 2( ) ( ) 2( ) 2 2 ) = 0N ln N N M lnM M M N ln M N M N N ln N N− + − + + − − − − + − 	

and thus with the use of the Stirling approximation, the Boltzmann 
entropy appears to be extensive for any given particle number N.

However, if equation 22 is plotted (Figure 3) a numerical analysis 
thereof for limN∞ ΔS indicates ΔS→∞.

Similarly, by using the first two terms of the Stirling series (equation 
5) in equation 23

(ΔS=kB(ln(2M)! – ln(2M – 2N)! – ln(2N)! –2lnM!+2ln(M – 
N)!+2lnN) approximates for N≠ 0 to

1 (0 (2 2 ) [2 (2 2 )] (2 2 )
2

2 2 2 [2 ( )] 2 2 )

BS k ln M ln M N ln N

ln M ln M N ln N

π π π

π π π

∆ ≈ + − − −

− + − +
     (25)

 

2 2

2
1 2 2 [2 ( )] [2 ] 1= ( =
2 2 (2 2 )(2 2 )(2 ) 2

( )][ ] 1( ) = [ (1 ) ]
( ) 2

B B

B

M M N Nk ln k
M N N M

M N N Nln k ln N
M M

π π π
π π π

π π

−
−

−
−

                (26)

Since the density of the system = N
M

ρ is an intensive state function 

and does therefore not change when increasing the system to the 
thermodynamic limit, for N ≠ M 

=Nlim S→∞∆ ∞ 	                                                                  (27)

In summary, by deriving the Boltzmann entropy of the “excluded 
volume” gas model it is concluded that the Boltzmann entropy is 
not extensive, neither for a small number of particles N nor at the 
thermodynamic limit (Table 1).

The Boltzmann entropy is not strictly extensive for a N 
particles system distributed over M energy levels

Following Kondepudi [7] we consider a box i with N 
indistiuingishable particles whose energy can be any of the M possible 
values E1, E2,…., EM. At equilibrium the particles are distributed over 
the M energy levels such that there are N1, N2,…., NM with 

=1
=M

jj
N N∑ . 

The numbers of microstates that describe the same macrostate is then 
the number of distinct ways in which the particles can be distributed in 
the M states yielding

1 2

!=
! !.... !i B

M

NS k ln
N N N 		        	        	            (28)

 This number of microstates takes into account the number of 
indistinguishable permutations within the same energy level (i.e., Nj!, 
while the number of all permutations is N!. The Boltzmann entropy of 
this system is 

1 2

!=
! !.... !i B

M

NS k ln
N N N 	     	                               	             (29)

Following the approaches described above, to show the extensive 
nature of the Boltzmann entropy, the entropy S1+2 of a combined system 
of two independent boxes 1 and 2 must be the sum of the entropies of 
the individual subsystem 2*Si (For simplicity we chose system 1 and 2 
are equal in nature). Thus,

1 2 1 2 1 2 1

1 2 1 2

= ( ) = 2 =
(2 )! !2

(2 )!(2 )!...(2 )! ! !.... !B B
M M

S S S S S S
N Nk ln k ln

N N N N N N

+ +∆ − + −

−        (30)

This equation can be simplified to

=1 =1
= [ (2 )! (2 )! 2 ! 2 ( )!]

M M

B j k
j k

S k ln N ln N ln N ln N∆ − − +∑ ∑                    (31)

By applying the Stirling approximation of equation 1

=1

=1

[2 (2 ) 2 (2 (2 ) 2 )

2 2 2 ( ( ) )]

M

B j j j
j

M

k k k
k

S k N ln N N N ln N N

N lnN N N ln N N

∆ ≈ − − −

− + + −

∑

∑
         (32)

=1 =1

=1 =1

[2 (2 ) 2 (2 )

2 2 ( )]

M M

B j j j
j j

M M

k k k
k k

S k N ln N N ln N

N lnN N ln N

∆ ≈ −

− +

∑ ∑

∑ ∑
                (33)

=1 =1

2
[ 2 ( ) 2 ( )] = 0

2
∆ ≈ − +∑ ∑

M M
j k

B j k
j k

N NS k N ln N ln
N N

	               (34)

Thus, by using the Stirling approximation of equation 1, the 
Boltzmann entropy of the given system is extensive. Furthermore, 
with the definition of the probability of occupying a state with energy 

Ej to be = j
j

N
p

N
 the Boltzmann entropy is given by the well known 

expression 
=1

= M
B j jj

S k N p ln p− ∑ .

However, as we have seen above, the Stirling approximation of 

Δ
S

 [k
B
] 

2.5 
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N 

Figure 3: The graph of equation 22 with (2 )! != ( 2 )
(2 2 )!(2 )! ( )! !B

M MS k ln ln
M N N M N N

∆ −
− −

 
is shown for N=1..95.
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equation 5 should rather be used. By doing so:

1 2 1
=1

=1

= 2 [0 (2 2 ) (2 2 )
2

2 (2 ) 2 (2 )]

M
B

j
j

M

j
j

kS S S ln N ln N

ln N ln N

π π

π π

+∆ − ≈ + −

− +

∑

∑
                 (35)

=1

=1

= [0 (2 ) (2 ) (2 ) (2 )
2

2 (2 ) 2 ( ) 2 (2 ) 2 ( )]

M
B

j
j

M

j
j

k ln ln N M ln ln N

ln ln N M ln ln N

π π

π π

+ + − −

− − + +

∑

∑
              (36)

   

=1 =1

= [0 (2 )(1 2 2 )
2

(2 ) (2 ) 2 ( ) 2 ( ))]

B

M M

j j
j j

k ln M M ln

N ln N ln N ln N

π+ − − + +

− − +∑ ∑
                      (37)

2 2
=1

=1

22= (0 (2 )( 1 ) ( ) ( )]
2

2 2= [ (2 )( 1) ( ) ( )]
2

M
jB

j j

M
B

j j

Nk Nln M ln ln
N N

k ln M ln ln
N N

π

π

+ − + + −

− + −

∑

∑
          (38)

11 2

1 2

=1

=1,

...= [ (2 )( 1) ( 2 )]
2 ..

1= [ (2 )( 1) ( 1) 2 ]
2

MB M

M
M

B
M

j
i

i i j

k N N Nln M ln
N N N

k ln M M ln ln
N

π

π

−

≠

+ +
− −

− − − − ∑
∏

                (39)

which results in 

=Nlim S→∞∆ ∞        				               (40)

In summary, again and also in this example, the Boltzmann entropy 
is not extensive, neither at a small number of particles N nor at the 
thermodynamic limit.

Discussion
The Boltzmann entropy is not extensive

Statistical mechanics has originated from the desire to obtain 
a microscopic understanding of macroscopic physics including in 
particular thermodynamics. Thermodynamic entities are thereby 
described (usually) at the thermodynamic limit. This includes 
the description of the thermodynamic entropy by the Boltzmann 
entropy. Unfortunately, as we have demonstrated above for three 
standard examples, the Boltzmann entropy is not extensive neither 
for a N particles system nor at the thermodynamic limit. Thus, if 
strict extensivity of the entropy is requested for thermodynamics, the 
Boltzmann entropy lacks an important property of its macroscopic 
analog. Actually, strict extensivity is a request because only with the 
extensive character of the entropy a mathematical description of 
thermodynamics is adequate. For example, if entropy is not strictly 
extensive, other extensive thermodynamic measures (such as the 
free energy or the volume) would loose their extensive character. 
Furthermore, there are pairs of intensive and extensive state functions 
such as T (temperature) and S as well as p (pressure) and V.

One may argue from a more practical point of view that 

the Boltzmann entropy is almost extensive and satisfies well the 
experimental data (i.e., if there is an error in the theoretical calculation 
it is too small to be measured). However, if the same argument would 
be applied to the mass of a system in classical mechanics it is the 
reviewer’s opinion that nobody would accept that the mass is only 
almost extensive. Actually, if the error made by the Stirling formula 
by calculating the entropy difference to a system with 1 mol particles 
is translated into its mass difference analog, an error in the order of 
10-6 Joule is calculated. While in the case of mass such small differences 
would be detectable, it is unfortunately not possible to measure entropy 
with such an accuracy.

One may reason further that because at the thermodynamic 
limit N→ ∞, V→ ∞, the Boltzmann entropy S→ ∞, and ΔS→ ∞ for the 
examples given above, one should rather introduce an entropy density 
such as = Ss

V
 with V the volume of the system or equivalent an entropy 

per particle with = Ss
N

 than the usually used Boltzmann entropy. 
Indeed, this approach resolves the problems about infinite values at 
the thermodynamic limit and = 0∆

∆ →
Ss

N
 for the examples given above. 

However, by definition the entropy density is an intensive function 
and thus discussions about an extensive character must be regarded 
obsolete. Moreover, if the same argument would be applied to the mass 
of a system (introduced above), only the density of the system could be 
used anymore and the mass itself is regarded meaningless.

Another argument that one may put forward is that surface effects 
have not been accounted for in the present calculations and that they 
are of similar size as the error in made by using the Stirling formula. In 
counting the number of micro-states W surface effects are in the order 
of 3 N± . and the fluctuations 3

2
N±  for a monoatomic ideal gas. The 

error made through the use of the Stirling formula is however 2 Nρ  
and is thus larger (and always positive).

Overall it is summarized that based on the examples illustrated 
above the strict extensivity of the Boltzmann entropy is challenged.

It is the Stirling approximation that makes the Boltzmann 
entropy extensive

From a mathematical point of view the lack of extensivity of the 
Boltzmann entropy is attributed to the entity N! inside the ln. This 
entity originally introduced to resolve the Gibbs paradox is usually 
present in all model systems with indistinguishable particles whether 
the system under study is of discrete or continuous, of classical or 
quantum mechanical nature. This suggests that the Boltzmann entropy 
in general does not describe the thermodynamic entropy.

In this context we would like to note, that it is actually the now 
challenged use of Stirling’ s approximation of equation 1, which 
provides strict extensivity of the Boltzmann entropy for any number 
of states and particles. This fact has nothing to do with how good 
Stirling’ s approximation approaches the value of factorial. With the 
requirement for strict extensivity of the Boltzmann entropy given by 
W(kM,kN)=Wk(M,N) for any integer k with = =N const

M
ρ  the Stirling 

approximation for the N factorial with NNe-N results in an extensive 
expression per se. In the first gas model described it results in the 
number of microstates with 1W( , ) = ( )NM N e

ρ
 and in the second example to 

1

1( 1)

1( )
W( , ) = ( )

1( 1)

NM N

ρ

ρ

ρ

ρ

−
−

 resulting in both cases to an exponential increase 

of the microstates with N and thus extensivity of the Boltzmann entropy 
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since S=kBlnW. It is thus the Stirling approximation that is extensive in 
nature within the context used here and not the Boltzmann entropy.

A comment on textbook examples that show the extensive 
nature of the Boltzmann entropy 

Many textbooks on physical chemistry and statistical mechanics 
show by using the examples given above (such as the ideal gas and the 
lattice gas models) the extensive character of the Boltzmann entropy 
by using the Stirling approximation of equation 1. As demonstrated 
above, the Stirling formula of equation 1 can however not be used for 
the thermodynamic limit because it is infinitely wrong for N→ ∞ (i.e., 
limN→∞(lnN! – NlnN + N)=∞; Figure 1). Furthermore, by applying an 
extended Stirling formula (i.e., equation 5), that approximates lnN! 
at the thermodynamic limit, lack of the extensivity of the Boltzmann 
entropy is obtained. It is thus recommended to omit in text books 
derivations that show the extensive nature of the Boltzmann entropy 
with examples having indistinguishable particles.

The Boltzmann entropy enables a perpetum mobile

Ruelle in his rigorous approach on statistical mechanics approaches 
the study of the Boltzmann entropy without the use of the Stirling 
formula. Adjusted to the context used here and the examples given 
above with the presence of two subsystems (i.e., boxes), which are 
independent of each others, he finds that the Boltzmann entropy is 
subadditive

	
1 2 1 2S S S+ + 				               (41)

In line with the examples above, the equality sign is deleted yielding 
S1+2>S1+S2 for a N particles system.

With this inequality, in the following the Boltzmann entropy as a 
description of the thermodynamic entropy will be put ad absurdum. 
For this it is assumed that the Boltzmann entropy describes its 
thermodynamics counterpart including equation 41:

	
1 2 1 2>td td tdS S S+ + 				               (42)

 This inequality equation can now be used to construct a perpetum 
mobile of second order: Let us start with a single box filled with ideal gas 
molecules at a given pressure p and temperature T in thermodynamic 
equilibrium. The box is now divided into two independent boxes of 
equal size, the same pressure p, and temperature T. Both boxes are still 
in a thermodynamic equilibrium. However, the sum of the entropy 
of the two subsystems decreased somewhat because of the inequality 
equation 42 and thus the system is able to do work described by a 
positive change in the Gibbs free energy although the system is in the 
thermodynamic equilibrium (note, this statement is of course absurd 
since a system in equilibrium is not able to do work). Next, the two 
boxes are put together. Since they do not differ in their temperature 
T, pressure p and density N=

V
ρ , nothing happens when the two are 

put together resulting in the starting state in its thermodynamic 
equilibrium. With this two steps process a cyclic machine can be 
constructed that is able to perform work from nothing, which is a 
perpetum mobile. Obviously, this is not possible as stated by the second 
law of thermodynamics indicating again that the Boltzmann entropy is 
not representing its thermodynamic counterpart.

Alternative counting of micro-states to rescue the Boltzmann 
entropy

Under the request for a strict extensive entropy function and based 
on the mathematical analysis above either an alternative microscopic 

description of the thermodynamic entropy is required or the counting 
of micro-states including the normalization N!, introduced by Gibbs, 
which accounts for the indistinguishability of the particles, must be 
altered. Let us first consider the latter case. In light of the extensive 
nature of the Stirling approximation a normalization that would result 
in an extensive Boltzmann entropy would be NNe-bn with b being a 
constant (Table 1). In the most simple case with b=0, the normalization 
would be NN. Following this suggestion, for the ideal gas example 
introduced above the number of possible micro-states would then be 

given by W = = ( )
N

N
i N

M M
N N

. A physical meaning of this entity is that the 

number of micro-states is given by the volume that a single particle is 
accommodating to the power of N. With other words, the probability 
of a particle to be at site M is given by the particle density = N

M
ρ . 

This normalization results in an extensive Boltzmann entropy for the 
ideal gas example given above (Table 1). Furthermore, the Boltzmann 
entropy of a fully occupied ideal gas with M=N is 0 as one would expect, 
which is actually not the case of the Boltzmann entropy calculated by 
the use of equation 7. Using this new normalization, extensivity of 
the Boltzmann entropy is also obtained for the examples Boltzmann 
Entropy enables a perpetum mobile (Table 1) and Alternative counting 
of micro-states to rescue the Boltzmann Entropy, if they are diluted 
systems (i.e., M >>N). However, while this mathematically driven 
normalization appears to be physically more or less sound for the given 
examples in other systems the factorial N! attributed in general to the 
number of permutations makes sense, is prominent, and can not be 
put aside easily.

An alternative to the Boltzmann entropy

In the request for an alternative microscopic description of the 
thermodynamic entropy we would like to refer the reader to the recently 
introduced concept by Riek suggesting that entropy is a consequence 
of a postulated discreteness of time [16]. By introducing a quantum 
time an arrow of time is introduced already at the microscopic physics 
level (as already mentioned by Pauli within a different context [22]) 
through a friction term in the discrete Newton’s equation. This yields 
a term in the total energy of the system defined as the microscopic 
entropy. Interestingly, its ensemble average approximates the 
Boltzmann entropy at thermodynamic equilibrium. Thus, it connects 
the microscopic physics with the macroscopic one without a statistical 
argument. It is extensive in nature and thus resolves the problems 
discussed here.

Conclusion
The presented calculations show that for the ideal gas and other 

simple textbook examples the Boltzmann entropy is not extensive 
unless the generally used Stirling approximation is applied. Since the 
extensive nature of entropy is an important request of thermodynamics 
as otherwise the second law of thermodynamics is violated, the claim 
of statistical mechanics that the Boltzmann entropy is a microscopic 
description of its thermodynamic analog is therefore challenged. This 
odd observation suggests to find alternative microscopy descriptions 
of entropy such as the microscopic entropy introduced by Riek [18], 
or an alternative counting of micro states within the frame work of the 
Boltzmann entropy as suggested here. It is stimulating to realize that 
the concept of entropy appears to be still puzzling albeit its amazing 
success in thermodynamics and statistical mechanics.

References

1.	 Ruelle D (1969) Statistical Mechanics. Mathematical Physics and monograph 
series. SBN 8053-8360-3, New York, USA.



J Phys Chem Biophys
ISSN: 2161-0398 JPCB, an open access journal

Citation: Riek R, Sobol A (2016) Comments on the Extensivity of the Boltzmann Entropy. J Phys Chem Biophys 6: 207. doi:10.4172/2161-0398.1000207

Page 7 of 7

Volume 6 • Issue 2 • 1000207

2. Landau LD, Lifshitz EM (1980) Statistical Physics. Oxford: Pergamon Press.
ISBN 0-7506-3372-7. 

3. Hoover WG (1999) Time Reversibility, Computer Simulation and Chaos.
Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co. Pvt. 
Ltd., Hackensack, NJ, USA, pp: 1- 262.

4. Stirling J (1730) Methodus Differentialis: Sive Tractatus de Summatione et
Interpolarione Serierum Infinitarum. 

5. Greiner W, Neise L, Stöcke H (1993) Thermodynamik und Statistiche Mechanik, 
Verlag Harri Deutsch: Frankfurt am Main, Germany. 

6. Atkins PW, de Paula J (2009) Physical Chemistry, Oxford University Press, UK.

7. Kondepudi D (2008) Introduction to Modern Thermodynamics. Wiley, England.

8. Gibbs JW (1993) The Scientific Papers of J. Willard Gibbs Ox Bow Press. ISBN 
0-918024-77-3. 

9. Stern O (1949) Rev M Phys 21: 534. 

10.	Kakorin S (2008) Revision of Boltzmann statistics for a finite number of 
particles. Am J Phys 77: 48.

11. Macrae RM, Allgeier BM (2013) Quirks of Stirling’s Approximation. J Chem
Educ 90: 731-734.

12.	Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. Journal 
of Statistical Physics 52: 479-487. 

13.	Tsallis C (2009) Introduction to nonextensive statistical mechanics: approaching 
a complex world, New York: Springer. ISBN 978-0-387-85358-1.

14.	Swendsen RH (2008) Gibbs’ Paradox and the Definition of Entropy. Entropy 
10: 15-18.

15.	Waite BA (1986) Equilibrium distribution functions: Another look. J Chem Educ 
63: 117.

16.	Loschmidt J (1876) Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss.
Classe 73: 128.

17.	Poincae H (1890) Sur le proble‘me des trois corps et les e quations de la
dynamique. Acta Math 13: 1. 

18.	Riek R (2014) A derivation of a microscopic entropy and time irreversibility from 
the discreteness of time. Entropy 16: 3149-3172.

19.	Riek R (2015) J Phys: Conference Series, 626 Article ID. 012025.

20.	Weisstein EW. Stirling’s Approximation. In: MathWorld (englisch).

21.	Clausius R (1865) The mechanical Theory of Heat - with its Applications to the 
Steam Engine and to Physical Properties of Bodies, John van Voorst: London, 
UK. 

22.	Pauli W (1973) Statistical Mechanics. Volume 4 of Pauli Lectures on Physics,
MIT Press, Cambridge Massachusetts, USA.

https://books.google.co.in/books?hl=en&lr=&id=BGrVCgAAQBAJ&oi=fnd&pg=PR5&dq=Time+Reversibility,+Computer+Simulation+and+Chaos%3B+Advanced+Series+in+Nonlinear+Dynamics&ots=IxcvPVUlY5&sig=XnNuJn4R8b_eSNSpMU5QlnvrcNM#v=onepage&q=Time Reversibility%2C Computer Simulation and Chaos%3B Advanced Series in Nonlinear Dynamics&f=false
https://books.google.co.in/books?hl=en&lr=&id=BGrVCgAAQBAJ&oi=fnd&pg=PR5&dq=Time+Reversibility,+Computer+Simulation+and+Chaos%3B+Advanced+Series+in+Nonlinear+Dynamics&ots=IxcvPVUlY5&sig=XnNuJn4R8b_eSNSpMU5QlnvrcNM#v=onepage&q=Time Reversibility%2C Computer Simulation and Chaos%3B Advanced Series in Nonlinear Dynamics&f=false
https://books.google.co.in/books?hl=en&lr=&id=BGrVCgAAQBAJ&oi=fnd&pg=PR5&dq=Time+Reversibility,+Computer+Simulation+and+Chaos%3B+Advanced+Series+in+Nonlinear+Dynamics&ots=IxcvPVUlY5&sig=XnNuJn4R8b_eSNSpMU5QlnvrcNM#v=onepage&q=Time Reversibility%2C Computer Simulation and Chaos%3B Advanced Series in Nonlinear Dynamics&f=false
http://scitation.aip.org/content/aapt/journal/ajp/77/1/10.1119/1.2967703
http://scitation.aip.org/content/aapt/journal/ajp/77/1/10.1119/1.2967703
http://pubs.acs.org/doi/abs/10.1021/ed300560w
http://pubs.acs.org/doi/abs/10.1021/ed300560w
http://link.springer.com/article/10.1007/BF01016429
http://link.springer.com/article/10.1007/BF01016429
http://link.springer.com/book/10.1007/978-0-387-85359-8
http://link.springer.com/book/10.1007/978-0-387-85359-8
http://www.mdpi.com/1099-4300/10/1/15
http://www.mdpi.com/1099-4300/10/1/15
http://pubs.acs.org/doi/abs/10.1021/ed063p117
http://pubs.acs.org/doi/abs/10.1021/ed063p117
http://www.mdpi.com/1099-4300/16/6/3149
http://www.mdpi.com/1099-4300/16/6/3149

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Theory 
	The Stirling approximations 
	The Boltzmann entropy  
	The Boltzmann entropy is not strictly extensive in the most simple description of the ideal gas 
	The Boltzmann entropy is not strictly extensive for the “excluded-volume” gas model 
	The Boltzmann entropy is not strictly extensive for a N particles system distributed over M energy 

	Discussion 
	The Boltzmann entropy is not extensive 
	It is the Stirling approximation that makes the Boltzmann entropy extensive 
	A comment on textbook examples that show the extensive nature of the Boltzmann entropy  
	The Boltzmann entropy enables a perpetum mobile 
	Alternative counting of micro-states to rescue the Boltzmann entropy 
	An alternative to the Boltzmann entropy 

	Conclusion 
	Table 1
	Figure 1
	Figure 2
	Figure 3
	References 

