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Introduction
Infectious disease is a major cause of morbidity and mortality. 

Following the development of penicillin [1], the first antibiotic, 
public health has been greatly improved through the development of 
subsequent antibiotics. A wide variety of antibiotics have demonstrated 
efficacy against infectious diseases, although they cause several adverse 
effects and their uses have led to the evolution of multidrug-resistant 
microorganisms. For example, strains of pathogenic microorganisms 
such as Mycobacterium tuberculosis [2], Staphylococcus aureus [3], 
and Pseudomonas aeruginosa [4] exhibit increased resistance to 
almost all antibiotics at present. A comprehensive understanding of 
the relationships between cellular molecules and the pathogenesis of 
infectious diseases is thought to be important for development of new 
strategies to prevent infection. In this review, Candida albicans, which 
causes candidiasis, was selected as a model pathogenic microorganism 
for systematic analysis of its cellular molecules. C. albicans is a 
pathogenic fungus that is an important cause of superficial mucosal 
and disseminated infections. Superficial and systemic candidiasis is 
observed when host immunity is compromised by AIDS, chemotherapy 
for treatment of cancer, or the administration of immunosuppressants. 
Indeed, the number of immunosuppressed patients has increased 
greatly, and these patients are at risk for opportunistic candidiasis 
infections [5].

Recently, life science and biotechnology researchers have begun to 
use “omics” technologies to analyze the molecular profile of individual 
cells [6]. Techniques of genomics [7], transcriptomics, proteomics [8], 
or lipidomics [9] have been utilized in studies of a variety of organisms, 
including C. albicans, for gaining a systematic understanding 
of physiological phenomena combined with molecular profiles. 
Concerning a search for vilurence-related proteins from C. albicans by 
using omics technology, proteomics is superior to other technologies 
because direct analysis of proteins is going to be performed. Here, we 
first review studies that have used a proteomic approach to analyze 
proteins of C. albicans with liquid chromatography and tandem mass 
spectrometry (LC-MS/MS) equipped with long monolithic silica 
capillary columns [10]. Furthermore, biotechnological applications of 
the data obtained using these analyses to oral vaccination are described.

Time-Course Proteomic Analysis of C. albicans
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 

has been widely used for proteomic investigations of C. albicans 
[11,12]. 2D-PAGE has typically been used for protein separation for 
proteome analysis. The shotgun approach is an alternative strategy 
for proteomic analysis that combines LC-MS/MS. This method can 
identify many kinds of proteins, including a small quantity of proteins 
in a high-throughput manner. In addition, systems with ultra-
performance chromatographic separation have been constructed, 
and have demonstrated excellent performance [13]. For instance, a 
system employing a long monolithic silica capillary column (350 cm) 
successfully identified 2,602 proteins produced in Escherichia coli 
cells in a single experiment [14]. Aoki et al. [15] applied the LC-MS/
MS system to a time-course proteomic analysis of C. albicans during 
adaptation to fetal bovine serum (FBS). In this study, C. albicans was 
first grown in a YPD medium and transferred to a YNB ± FBS medium. 
This experiment presents a model for early systemic candidiasis in 
which C. albicans adapts to the bloodstream. C. albicans incubated 
in YNB ± FBS media for 0–60 min could provide a good model to 
investigate the dynamics of proteome variation in the early stages of 
infection. In the next step, prepared peptides derived from proteins 
identified from C. albicans grown in YNB ± FBS media were subjected 
to LC-MS/MS measurement using a long monolithic silica capillary 
column (200 cm) [16], and a lot of proteins were successfully identified. 
Aoki et al. [15] identified 1130, 1012, and 701 proteins from the 0, 60 
min cultures in YNB −FBS, and 60 min of YNB +FBS samples. In 
addition, 1034, 933, and 868 proteins were identified from time-course 
samples of 10, 20, and 40 min of YNB +FBS, respectively (Table 1). A 
total of 1418 unique proteins were identified (Figure 1A) [15]. Of these 
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proteins, 517 were found in all three samples and recognized as a core 
set of the C. albicans proteome. Protein identification was performed 
using MASCOT (Matrix Science, London, UK) against the assembly 21 
protein database at Candida genome database (CGD).

A group of proteins (i) that were not found in the 60 min YNB −
FBS or 0 min samples and (ii) that persisted in the 60 min YNB +FBS 
once identified during any period were defined as ‘newly produced 
proteins.’ These proteins were recognized as important effectors 
that positively contributed to cellular integrity during their presence 
in the serum. Four proteins (RHR2, HGT1, ATP16 and orf19.3767) 
were first identified at 10 min, and these were continuously detected 
during the latter periods. In the same manner, four additional proteins 
were identified as newly produced proteins at each period (20, 40, or 
60 min) (Figure 1B). A total of 16 proteins (RHR2, HGT1, ATP16, 
SPT14, ERG6, PEX12, orf19.3767, orf19.713, orf19.3686, orf19.4825, 
orf19.4620, orf19.4594, orf19.5342.2, orf19.4123, orf19.2439 and 
orf19.6211) were classified as newly produced proteins.

In contrast, proteins (i) that were continuously detected from 0 
min to a certain time, (ii) that were not detected after they disappeared 
at any period, and (iii) that were not detected in the 60 min YNB−
FBS sample were defined as “disappearing proteins.” Although these 
proteins may provide advantages in a nutrient-rich situation, they may 
also have disadvantages in a harsh environment and they are thought 
to be unnecessary. The analysis identified 217 proteins as disappearing 
proteins (Figure 1C).

Early investigations performed using 2D-PAGE could not identify 
dynamic differences between reference maps [17,18]. These results 
could be attributed to a bias toward abundant proteins, samples 
containing complex protein mixtures, and the low dynamic range of 

2D-PAGE. However, the time-course proteome study used monolithic 
LC-MS/MS-based technique can identify less-abundant proteins with 
difficult biochemical properties. Thus, identification of the dynamic 
variation in the proteome which includes disappearance was instructive 
for understanding of candidiasis.

Quantitative Time-Course Proteomics
Aoki et al. [15] has also reported a quantitative time-course 

proteomics study of C. albicans during the early stages of adaptation to 
serum (0–180 min) [19]. Quantitative time-course proteome analysis 
is a promising approach. It requires a high-throughput strategy to 
measure a large number of samples. In this case, an LC-MS/MS system 
with a monolithic silica capillary column longer (470 cm) than that 
described in the previous section [15] was used. Using this system, 
the researchers were able to identify several thousand proteins in a 
high-throughput manner, without laborious sample fractionation. 
Comprehensive characterization of the adaptation process using 
quantitative time-course proteome analysis is expected to profoundly 
enhance our understanding on the virulence of C. albicans.

C. albicans cells were collected and transferred to YPD media
(named as YPD series) or YPD+FBS (named as FBS series). The 
media were immediately shaken for 0, 30, 60, 120, and 180 min at 
37°C. Extracted proteins were labeled using tandem mass tagging 
(TMT) and evaluated, and LC-MS/MS analysis was performed with a 
long monolithic silica capillary column (470 cm), using the proteome 
samples taken at 0 min on YPD as a control. The sample (named as 0 
min YPD) was aliquoted into 3 tubes by volume at a ratio of 1:0.5:2, 
and these samples were labeled with TMT-126, TMT-127, or TMT-
128, respectively. The proteomes of these YPD and FBS series were 
analyzed using the LC-MS/MS system. In the analysis, 1,024 proteins 
were identified and quantified. Of these proteins, 44 were categorized 
as YPD-specific and 28 were categorized as FBS-specific (Figure 2). 
The mass spectrometry data of each sample were used for protein 
identification, and quantification was performed using Proteome 
Discoverer 1.2 (Thermo Fisher Scientific). Protein identification was 
performed using MASCOT.

To interpret the proteomic changes in detail, proteins were 
hierarchically clustered (on a vertical axis) and associated with 12 
characteristic categories, labeled A to L. Four types of groups were 
identified, i.e. groups that showed an increasing trend both in the YPD 
and FBS series (A–D), a cluster that showed an increasing trend in the 
YPD series (E), groups that showed an increasing trend in the FBS 
series (F and G), and other groups (H–L). To categorize these groups 
at a functional level, the proteins were subjected to gene ontology (GO) 
enrichment analysis using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/). 
Groups A–D were shown to be enriched in proteins related to cellular 
homeostasis, redox regulation, and glycoprotein metabolism.

Proteins in group E (YPD-specific) were shown to be associated 
with aminoacyl-tRNA biosynthesis. Group G (FBS-specific) was shown 
to be enriched with proteins involved in intracellular processes such 
as catabolic acetyl-CoA catabolism and coenzyme catabolic processes 
related to the citrate cycle. Proteins in the citrate cycle were upregulated 
in the FBS series compared to the YPD series; many proteins involved 
in the citrate cycle (for example, Aco1, Idp1, Sdh12, and Mdh1) were 
enriched in group G. C. albicans cells appear to optimize their protein 
profiles by upregulating proteins in the citrate cycle to efficiently 
acquire energy in the blood. This observation is in accord with the 
previous microarray analysis that noted that human blood and a 
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Figure 1: Summary of proteins identified in time-course proteome analyses 
of C. albicans [15]. A) The Venn diagram of identified proteins in the sample 
at 0 and 60 min in YNB ± FBS. The total number of unique proteins identified 
was 1418. B) The number of newly produced proteins during adaptation to the 
serum. Totally, 16 proteins were produced. C) The number of disappearing 
proteins.

Table 1: The number of identified proteins at each periods.
Sample name Protein concentration

(mg mL-)
The number of
identified proteins

0 min 3.21 1130
YNB -FBS 60 min 3.80 1012

10 min 3.43 1034
20 min 3.43 933

YNB + FBS
40 min 3.40 868
60 min 3.49 701

http://david.abcc.ncifcrf.gov/
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polymorphonuclear cell fraction could transcriptionally activate the 
citrate cycle [20]. Further, another investigation has demonstrated 
that Gcn4 [21], a transcriptional activator, plays an important role 
in upregulation of the citrate cycle [22]. In light of these results, the 
validity of this proteomic method was successfully demonstrated. 

To analyze treatment-specific proteome patterns, time-course 
profiles of the FBS series and the YPD series were categorized using 
non-hierarchical K-means clustering (Figure 3). Two protein clusters 
with significant upregulation in the FBS series (Group 1: 10-fold, 
Group 2: 5-fold) were identified (Figure 3A), whereas the proteins 
in the YPD series showed only modest changes, with a maximum 
of about 2-fold increase (Figure 3B). In the FBS series, only 2 (Sod5 

and Blp1) of the 1,024 identified proteins were clustered in Group 1, 
and 4 proteins (Ece1, Ucf1, Stf2 and Hgt1) were clustered in Group 2. 
Other proteins in the FBS series showed moderate abundance changes 
[19]. Based on these results, we suggest that C. albicans employed the 
following adaptation strategy: first, C. albicans tuned its proteome to 
adapt to a new environment, in which most proteins were upregulated 
2-fold higher than has been suggested by previous studies [23]. Second, 
a few proteins were upregulated >5-fold, which might suggest that
these proteins were critical for adaptation to the novel environment.
These findings are not in accord with all the data presented in previous 
transcriptome analysis reports, which have shown that dozens of
proteins were upregulated >5-fold after blood treatment [20,24],
indicating a low correlation between transcriptome and proteome
analyses of C. albicans, owing to differences in the stability of transcripts 
and proteins.

Proteins uniquely identified or specifically upregulated in the FBS 
series may be important factors for adaptation to serum. Aoki et al. 
[15] selected proteins upregulated only in the FBS series, identifying
22 proteins that were specifically upregulated in the FBS series. In
addition, 28 proteins were uniquely identified in the FBS series.
These 50 proteins were designated “FBS-induced proteins.” Several
previously identified virulence factors, for example, Alo1, Nag6, Phr1,
Rpf2, and Sod5 [25-29], were included in this group, indicating that
these proteins are potential virulence factors.

Examination of a Novel Antigen Candidate
C. albicans malate dehydrogenase (Mdh1p) was identified by the

time-course proteome studies discussed above as the group 4 (Figure 
3), and was thought to be a candidate for a vaccine against candidiasis 
because it was identified through every periods without large 
variation in relative abundance. Indeed, Mdh1p was also identified 
in a proteome study for screening C. albicans immunogenic proteins 
by a two-dimensional electrophoresis（2-DE/MS system [30]. As 
an antigen candidate of C. albicans, a commonly existing protein in 
every situations and associated with an important metabolic pathway 
is thought to be suitable for a vaccine. Mdh1p is associated in the 
citrate cycle. Therefore, recombinant Mdh1 protein (Mdh1p) with 
a His-tag was produced in E. coli and evaluated as an immunogenic 
protein and a candidate vaccine against candidiasis [31]. Recombinant 
Mdh1p was purified using an endotoxin column and administered to 
mice via subcutaneous injection or intranasal administration before 
they were given a lethal dose of C. albicans. After vaccination, IgG 
antibody responses were evaluated by enzyme-linked immunosorbent 
assay (ELISA). Furthermore, survival tests were performed to evaluate 
the efficacy of Mdh1p as a vaccine. All control mice died within 25 
d. In contrast, 100% and 80% of mice treated with subcutaneous and
intranasal administration of Mdh1p, respectively, survived. These
results indicated that, among the C. albicans antigens examined thus
far, such as hyphal wall protein (Hwp1p), phosphoglycerate kinase
(Pgk1p), and glyceraldehyde-3-phosphate dehydrogenase (Gap1p)
[32], Mdh1p is currently the most effective antigen for use as a vaccine
for C. albicans. Furthermore, an investigation of time-course variation
in C. albicans under serum-containing conditions to identify virulence-
related molecules could also provide novel and effective antigenic
proteins.

A Convenient Tool for Preparation of Antigenic Proteins
To produce larger quantities of antigenic proteins identified by 

proteomic investigation, a convenient biotechnological tool is required 
for pharmaceutical development. One technique that shows potential, 
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Figure 3: The individual protein profiles were grouped 1 by K-means clustering 
for A) FBS or B) YPD series. For the FBS series, the detailed profiles of group 
3–5 are dipicted in the magnified panel [19].
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molecular display technology, has been developed in recent years. The 
technology uses genetically engineered microorganisms to produce 
foreign proteins via a very simple strategy [33]. The approach consists 
of fusion of a heterologous protein such as an antigen to a cell-wall 
protein, thereby anchoring the foreign protein to the cell surface. The 
molecular display method to prepare target proteins is especially well 
established for use with the yeast Saccharomyces cerevisiae, and it is also 
known as “cell surface engineering” [34-39]. For example, an antigen 
from red sea bream iridovirus (RSIV) was displayed on the surface of 
yeast cells to create an oral vaccine for use in fisheries [40]. β-glucan, an 
abundant component of the yeast cell wall, is thought to function as an 
adjuvant [41]. Further, yeast is a generally recognized as safe (GRAS) 
organism, suitable for the preparation of oral vaccines without antigen 
purification, while that process is required for recombinant proteins 
produced by E. coli. Therefore, molecular display could provide a 
method for production of antigenic proteins selected in proteome 
studies that is more rapid and convenient than conventional vaccine 
production methods.

Enolase1 (Eno1p) from C. albicans has been selected as a model 
antigenic protein to be displayed on the surfaces of S. cerevisiae cells 
[42,43]. Eno1p has been identified as the group 5 in quantitative 
time-course proteome analyses (Figure 3). For a reason as same as 
Mdh1p in the previous section, Eno1p was though to be suitable for an 
antigen candidate of vaccine. Eno1p is also associated in an important 
metabolic pathway, glycolysis. To construct an oral vaccine, Eno1p 
was displayed on the yeast surface via introduction to the yeast strain 
BY4741 using the pULD1-eno1 plasmid; successful transformation 
was confirmed. Display of Eno1p on the cell surface of BY4741/eno1 
cells harboring the plasmid was observed by immunofluorescence 
microscopy. For quantitative analysis of the relative amounts of Eno1p 
displayed on the surface of yeast cells during cultivation in a liquid 
medium, the fluorescence of yeast cells bound with AlexaFluor488-
labeled IgG was measured. Eno1p-displaying yeast cells were grown for 
oral administration to mice; cells displayed a large number of Eno1p-
fusion proteins on their surfaces.

To evaluate the efficiency of Eno1p-displaying yeast cells as a 
vaccine, mice were vaccinated by oral administration of the cells 
4 times over the course of a 7-week period before challenge with a 

lethal dose of C. albicans. The average titer of antibody against Enop1 
generated after oral administration of yeast cells displaying Eno1p 
was evaluated by ELISA. An average titer of antibody against Eno1p 
generated after the administration was 5.2×103, although the value 
varied substantially between animals, from 1.0×102 to 5.2×104. Thus, 
the yeast could positively present sufficient immunological stimuli to 
immunize almost all mice. In the evaluation of the protective effect 
of the oral vaccine, examination of survival rate after challenge with 
a lethal dose of C. albicans for 35 days indicated that 60% of mice that 
received an oral dose of Eno1p-displaying cells survived longer than 
mice that received an oral dose of yeast cells displaying no Eno1p 
(Figure 4). This survival rate is better than that found in conventional 
antigen administration trials using subcutaneous injection (12.5%) or 
intranasal administration (25%). These results suggest that cell-surface 
display of an antigen with adjuvant potential selected in proteome 
studies and administration of cells constructed by molecular display 
may provide a convenient and effective type of oral vaccine against 
not only candidiasis but also various infectious diseases. In addition, 
this yeast oral vaccine can be prepared rapidly because, unlike proteins 
produced in E. coli, it does not require a complicated purification step, 
and mutations can be easily generated because the plasmid DNA is easy 
to be manipulated. Although only a yeast system for molecular display 
is described here, bacterial systems can also be used [44,45].

Conclusions
Here we reviewed studies that identified dynamic variations in 

the C. albicans proteome by using quantitative time-course proteome 
analyses using a LC-MS/MS system with a long monolithic silica 
capillary column. This research strategy enabled identification of 
virulence-related molecules that could be used in creation of novel 
pharmaceuticals such as vaccines. We also reviewed the oral delivery 
of yeast cells displaying surface antigens, which were shown to 
protect more than 50% of the mice studied against candidiasis. This 
demonstrated the potential of molecular display of immunogens 
selected by proteomic analysis for convenient generation of oral 
vaccines against various infectious diseases. Although further 
demonstrations using other candidate proteins are indispensable to 
establish reliable technology for vaccine development, the combination 
of a proteomic approach with molecular display technology could be 
developed into a convenient and powerful tool for creation of vaccines 
against various infectious diseases.
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