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Abstract

Ceramide-based therapeutics have gained recent attention as anti-neoplastic therapeutics. These include
standard of care therapeutics that in part exert efficacy through the generation of ceramide, as well as new
therapeutics that seek to specifically deliver or augment ceramide levels in malignant cells. Ceramide is a bioactive
sphingolipid involved in apoptotic and stress cellular signaling pathways. It has also been shown to regulate
oxidative stress, which may negate its otherwise anti-neoplastic effects by promoting the proliferation of leukemia
cells. Metabolism of ceramide to neutral or pro-oncogenic metabolites can serve as a further pathway of therapeutic
resistance. In this study, the antioxidant 7,8-benzoflavone (BF) was identified through a natural products chemical
library screening process as a compound that can augment the efficacy of nanoliposomal C6-ceramide (Lip-C6) in
cellular models of Acute Myeloid Leukemia (AML). This study demonstrates that BF exerts an antioxidant effect in
AML, which likely refines the bioactivity of ceramide as an anti-leukemic agent. Intriguingly, BF has been shown to
block drug efflux pumps, such as P-glycoprotein, allowing BF to also impede P-glycoprotein-mediated ceramide
glycosylation. In this study, BF was further formulated into nanoliposomes for in vivo studies using two murine
models of AML. Treatment of C3H/HeJ mice engrafted with a FLT3-ITD driven AML with a combinatorial
nanoliposomal formulation of BF and Lip-C6 significantly augmented the survival of mice beyond that of
nanoliposomal formulations containing either agent alone. This was in contrast to the modest extension of survival of
C57BL/6J mice engrafted with C1498 AML cells utilizing either single agent or combinatorial nanoliposomal
formulations. Altogether this study demonstrates that the anti-AML efficacy of Lip-C6 as a ceramide-based
therapeutic can be augmented for particular types of AML, such as that driven by FLT3-ITD, by combinatorial
treatment with the antioxidant BF.
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Introduction
Flavonoids are a natural plant product ubiquitous in nature whose

potential benefits in medicine have been known and extensively
studied [1]. 7,8-Benzoflavone (BF) is a synthetic flavonoid that has
previously been implicated in aromatase inhibition, breast cancer
resistant protein inhibition, and aryl hydrocarbon receptor signaling
[1-4]. Flavones have been investigated as chemopreventive agents due
to their ability to scavenge reactive oxygen species, either produced de
novo or by carcinogens, and have been shown to be antiproliferative in
vitro [5,6].

Over-production of Reactive Oxygen Species (ROS) can alter the
redox environment of the cell and have consequences on growth
regulation. In particular, oxidation of a cysteine residue in the catalytic
center of protein tyrosine phosphatase prevents removal of phosphate

groups on receptor tyrosine kinase (RTK) target molecules [7,8]. This,
in turn, removes an important regulatory point and constitutive
activation of these molecules, promoting a pro-mitogenic cellular
environment [7,8]. Theoretically, alteration of the redox state of cells
could prevent unregulated growth of cells. Of particular interest to this
study is the balance between ROS accumulation and the propagation
and survival of Acute Myeloid Leukemia (AML) cells in vitro through
modification of tyrosine phosphatases. Several studies have linked
increases in ROS to both hematopoietic stem cell proliferation and the
proliferation of AML cells [9-12]. AML is a cancer of myeloid
precursor cells that results in proliferation of immature myeloblasts
and can often follow a rapid clinical course [13-16]. Several
cytogenetic abnormalities are responsible for the development of AML
and many have been clinically categorized by prognosis [15,16]. While
knowledge of the molecular basis of AML has grown substantially in
the past 30 years, development and implementation of new
therapeutics has been somewhat stagnant [15,16].

Barth et al., J Leuk 2014, 2:4
DOI: 10.4172/2329-6917.1000152

Research Article Open Access

J Leuk
ISSN:2329-6917 JLU, an open access journal Volume 2 • Issue 4 • 1000152

Journal of Leukemia

Jo
urn

al of Leukemia

ISSN: 2329-6917

mailto:bmb14@psu.edu


Ceramide is a natural sphingolipid that can be produced de novo in
cells or formed from a variety of metabolites and is known to be
extensively involved with apoptosis [17-22]. Furthermore, altered
ceramide metabolism and efflux has been linked to cellular resistance
to apoptosis and is frequently found in cancer cells as a mechanism
clearly associated with the development of drug resistance
[17,19,21,22]. Ceramide and its metabolite, sphingosine-1-phosphate,
strike a delicate intracellular balance between ceramide – induced
apoptosis and sphingosine-1-phosphate-influenced cell survival and
proliferation [18-20]. Another ceramide metabolite, glucosylceramide,
has been linked to drug-resistant breast cancer [19-21]. Interestingly,
the glycosylation of ceramide species occurs at the Golgi membrane by
the coordinated activities of glucosylceramide synthase and P-
glycoprotein [19,21]. Importantly, BF may behave as an inhibitor of P-
glycoprotein, a drug efflux pump implicated in conferring drug
resistance in multiple tumor types [23]. The use of BF has been shown
to re-sensitize tumors to chemotherapies [23]. Liposomal formulations
of ceramide and ceramide metabolites have been extensively studied in
our lab [19,20,24,25]. Due to its apoptosis-inducing properties, cellular
ceramide accumulation is an ideal pharmacologic target. The
liposomal formulation of ceramide allows for stabilization of the
otherwise insoluble ceramide as well as enhanced ceramide delivery to
the cells [19]. Recently we demonstrated that blocking ceramide
metabolism could induce apoptosis or autophagy in leukemia cells
[20].

In the present study, we used a chemical library screen to identify
BF as a compound that augments the anti-AML efficacy of
nanoliposomal C6-ceramide (Lip-C6). We further showed that BF and
Lip-C6 act synergistically to decrease the viability of multiple AML cell
lines and that BF exerts an antioxidant effect independent of, and
complementary to, the effect of ceramide. Finally, this study
demonstrated that the combination of Lip-C6 with BF can
significantly increase the survival of mice engrafted with AML driven
by FLT3-ITD.

Materials and Methods

Cell culture
Human HL-60, HL-60/VCR, 32D-FLT3-ITD, and murine C1498

cells, were maintained at 37°C, and 5% CO2, in RPMI-1640
supplemented with 10% Fetal Bovine Serum (FBS) and 1% penicillin/
streptomycin.

Nanoliposome formulation
Nanoliposomes were prepared by the Penn State College of

Medicine Drug Discovery Core following previously established
methods with minor changes for the nanoliposomal BF (Lip-BF)
formulation. All lipids were obtained from Avanti Polar Lipids
(Alabaster, AL, USA). Ghost nanoliposomes (Lip-Ghost) and Lip-C6
were prepared as previously described [20,24,25]. Briefly, lipids
dissolved in chloroform, or other organic solvents, were combined in
specific molar ratios. For Lip-BF, aliquots of DSPC (1,2-distearoyl-sn-
glycero-3-phosphocholine), DOPE (1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine), DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]), and
BF, were made in a 5.66:2.87:1.47:0.05 molar ratio. For Lip-C6
containing BF (Lip-C6/BF) the same molar equivalent of BF in Lip-BF
was added to the Lip-C6 formulation. Solutions were dried to a film
under a stream of nitrogen, and then hydrated by addition of 0.9%

NaCl. Solutions were sealed, heated at 60°C (60 min), and subjected to
vortex mixing and sonicated until light no longer diffracted through
the suspension. The lipid vesicle-containing solution was quickly
extruded at 60°C by passing the solution 10 times through 100 nm
polycarbonate filters in an Avanti Mini-Extruder. Nanoliposomal size
and integrity was determined using a Malvern Zetasizer Nano ZS at
25°C. Nanoliposome formulaitons were stored at room temperature
until use.

Cellular viability assays
Human HL-60, HL-60/VCR, 32D-FLT3-ITD, and murine C1498

cells, were plated at 2.5x104 cells per well in 96-well tissue culture
plates and treated for 48 h. Following treatment, cellular viability was
assessed using a Cell Titer 96 AQueous Non-Radioactive Cell
Proliferation Assay according to the manufacturer’s instructions
(Promega, Madison, WI, USA). Viability was determined by
measuring absorbance at 490 nm using a microplate reader and
normalizing to the viability observed under control conditions.
CalcuSyn Software (Biosoft, Cambridge, UK) was used to determine
combinatorial effects of treatments [24]. Cellular viability data was
used for this analysis, and a Combination Index (CI) less than or equal
to 0.9 was considered synergistic. CI values greater than or equal to 1.1
were considered antagonistic, whereas CI values between 0.9 and 1.1
were considered additive.

TimTec natural products chemical library screen
Cellular viability assays evaluating HL-60/VCR cells were used to

screen the Tim Tec natural products chemical library (TimTec,
Newark, DE, USA) for compounds that augmented the efficacy of Lip-
C6. A screen of 480 different compounds was performed (10 µM per
compound) in combination with Lip-C6 (10 µM) and compared to the
Lip-C6 alone. Hits were determined as those compounds that
augmented the anti-AML efficacy of Lip-C6 beyond three standard
deviations from the mean according to Z-score analysis (3/480 =
0.625% hit rate).

ROS assay
HL-60/VCR cells were treated for 24 h prior to addition of 2 µM of

the redox-sensitive indicator H2-dichlorofluorescein diacetate, which
was added directly to the culture media 30 min prior to analysis. Upon
oxidation, dichlorofuorescein (DCF) fluorescence was indicative of the
generation of ROS, and was evaluated at the Penn State College of
Medicine Flow Cytometry Core using a LSR II flow cytometer and BD
FACS Diva software.

In Vivo studies
All procedures were approved by the Penn State College of

Medicine Institutional Animal Care and Use Committee. C57BL/6J
mice were engrafted by retro-orbital injection with 1x106 C1498 cells
and C3H/HeJ mice were engrafted by retro-orbital injection with
2.5x106 32D-FLT3-ITD cells. Mice were treated with Lip-Ghost, Lip-
C6, Lip-BF, or Lip-C6/BF (0.1 mL i.p. injections of 25 mg/mL
liposomal formulations) three times per week for four weeks or until
they became moribund and were euthanized.
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Results and Discussion
We screened the TimTec natural products chemical library (480

molecules) to identify compounds that enhance the anti-AML efficacy
of Lip-C6. Using the HL-60/VCR human AML cell line three flavone
compounds were identified including glabranine, 6,7-
dimethoxyflavone, and BF (Figure 1). Overall, there was a positive hit
rate of 0.625% with a positive result identified as being three standard
deviations beyond the mean in a Z-score analysis. In particular, we
observed BF exerting its effects due in part to its ability to act as an
antioxidant. Current literature proposes that antioxidants such as BF
prevent oxidation of cysteine residues in the catalytic center on
tyrosine phosphatases that can lead to unregulated proliferation by
constitutive activation of RTK second messengers [7,8]. Additionally,
BF may behave as an inhibitor of drug efflux pumps such as P-
glycoprotein [1,23]. In addition to traditional roles eliminating
cytotoxic agents from cells, drug efflux pumps such as P-glycoprotein
have also been shown to participate in the metabolism of ceramide to
glucosylceramide by glycosylation at the Golgi membrane [19-21].
Therefore, in addition to an antioxidant role for BF, alteration of the
activity of P-glycoprotein may serve to alter the metabolism of
ceramide to favor its accumulation. For these reasons, we chose to
further evaluate the combination of BF and ceramide as an anti-AML
therapeutic strategy.

Following the identification of BF from screening the Tim Tec
natural products library as a compound that can augment the anti-
AML efficacy of Lip-C6, a more thorough analysis of the
combinatorial effects was evaluated using a variety of AML cell lines
and cellular viability assays (Figure 2). Profound combinatorial
efficacy of BF and Lip-C6 was observed in both 32D-FLT3-ITD and
HL-60/VCR cell lines, with synergistic efficacy confirmed for the later
(CI=0.177). Parental HL-60 cells (not selected by vincristine
resistance) and C1498 cells were sensitive to either agent alone but
only combinatorial effects were modest and/or not dose dependent.
For the more substantial combinatorial effects observed with 32D-
FLT3-ITD and HL-60/VCR cells the combination promotes an anti-
AML effect at lower doses than either treatment alone. It is possible
that C1498 cells do not show this same combinatorial effect due to
differential expression of drug efflux pumps [20], and therefore less
sensitivity to BF antagonism of ceramide glycosylation, or because
they do not generate and benefit from a profound pro-oxidant state. In
further support of the notion that BF exerts its combinatorial anti-
AML efficacy with Lip-C6 by acting as an antioxidant, by using an
ROS assay we observed that HL-60/VCR cells existed in a substantial
pro-oxidant environment that was specifically down regulated by BF
(Figure 3). This was noted both with and without the addition of Lip-
C6. By reducing the redox state of the cells, BF may prevent cysteine
oxidation on protein tyrosine phosphatases which otherwise may lead
to unregulated growth and proliferation [7,8]. It is known that
ceramide induces oxidative stress within the cell. Therefore, the
addition of BF may relieve this pro-oxidant effect which would refine
the effect of ceramide to be more specifically directed towards
inducing apoptosis of the malignant cells. More so, BF may be a better
candidate to pair with Lip-C6 than other antioxidants, such as vitamin
E, given BF’s potential role in blocking ceramide glycosylation by
impeding P-glycoprotein [19-21].

Figure 1: Screen of natural products chemical library evaluating
those that augment the anti-AML efficacy of nanoliposomal C6-
ceramide. Z-score analysis was used to identify hits as those
augmenting therapeutic efficacy at least 3 standard deviations from
the mean. 3/480 hits were identified (0.625%).

A murine study further reinforced the in vitro findings. First, to
improve its in vivo delivery BF was formulated into nanoliposomes
with or without C6-ceramide (Figure 4a). The anti-AML efficacy of
Lip-BF compared with free BF using the 32D-FLT3-ITD cell lines, and
was found to have nearly equivalent efficacy (Figure 4b). C57BL/6J
mice engrafted with C1498 cells (Figure 4d), and C3H/HeJ mice
engrafted with 32D-FLT3-ITD cells (Figure 4e), were then treated with
Lip-Ghost, Lip-C6, Lip-BF, or the combinatorial Lip-C6/BF. Survival
curves from mice engrafted with 32D-FLT3-ITD cells demonstrated
enhanced survival with the combinatorial liposomal formulation than
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compared to control and either treatment alone. However, the mice
engrafted with C1498 cells showed no enhanced survival by the
combinatorial formulation compared to single agent treatment. These
in vivo studies confirmed in vitro observations, suggesting that the
combination of BF with Lip-C6 may only work in the scenarios where
the leukemia has a profound pro-oxidant state by offsetting the
additional and counterproductive pro-oxidant actions of Lip-C6. This
was evidenced in our study by the substantial increase in survival of

C3H/HeJ mice engrafted with 32D-FLT3-ITD cells, with 60% of the
mice surviving long term when treated with the combinatorial Lip-
C6/BF formulation. Overall, this study identified the antioxidant BF as
a compound that can effectively be combined with Lip-C6 for the
treatment of certain AMLs with enhanced oxidative states such as
those harboring mutations of FLT3 [12]. The further development of
liposomal formulations of BF, and other antioxidants, may hold a
promising future for the treatment of aggressive AML.

Figure 2: AML cell lines were evaluated for therapeutic sensitivity to nanoliposomal C6-ceramide (Lip-C6) and 7,8-benzoflavone (BF) using
cellular viability assays. (A) BF anti-AML efficacy was evaluated using murine C1498 and 32D-FLT3-ITD cells as well as human HL-60 and
HL-60/VCR cells. (B) Lip-C6 anti-AML efficacy was evaluated using murine C1498 and 32D-FLT3-ITD cells as well as human HL-60 and
HL-60/VCR cells. (C) The combination of Lip-C6 and BF was evaluated using HL-60/VCR cells by evaluating a range of Lip-C6
concentrations while holding BF at constant concentration. (D) Isobologram depicting the synergistic combinatorial index (CI) observed for
Lip-C6 and BF using HL-60/VCR cells. The combination of Lip-C6 and BF was evaluated using C1498 (E), 32D-FLT3-ITD (F), HL-60 (G),
and HL-60/VCR (H) cells by evaluating a range of BF concentrations while holding Lip-C6 at constant concentration.
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Figure 3: 7,8,-Benzoflavone (BF) exerted an antioxidant effect in HL-60/VCR cells, an effect apparent where nanoliposomal C6-ceramide
(Lip-C6) and BF exert synergistic efficacy. Following treatment, cells were loaded with a redox-sensitive indicator and analyzed by flow
cytometry. Untreated control (A), DMSO vehicle control (B), empty “ghost” nanoliposomal (Lip-Ghost) control (C), BF treatment (D), Lip-
C6 treatment (E), and treatment with the combination of Lip-C6 and BF (F).
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Figure 4: Nanoliposomal formulation of 7,8-benzoflavone (BF) and
in vivo evaluation of anti-AML efficacy with nanoliposomal
ceramide (Lip-C6). (A) Light scatter analysis confirmed
nanoliposomal BF (Lip-BF) nanosize and stability. (B) Cellular
viability assays confirmed that Lip-BF and free/unencapsulated BF
exerted similar therapeutic efficacy using 32D-FLT3-ITD cells. (C)
Light scatter analysis confirmed combinatorial nanoliposomal C6-
ceramide and BF (Lip-C6/BF) nanosize and stability. (D-E) Survival
was evaluated using two murine models treated with liposomal
formulations. Combinatorial extension in survival was only
observed in 32D-FLT3-ITD-engrafted C3H/HeJ mice, but not
C1498-engrafted C57BL/6J mice. This confirmed in vitro studies
which showed that 32D-FLT3-ITD cells were synergistically
sensitive to Lip-C6 and BF, but C1498 cells were not.
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