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Abstract

This research concerns cognitive modeling and emotion
recognition based on collections of the real time human brain
waves (EEG). In this talk, we present the current status of the
research field as it is known to us and discuss the two-phase
modeling approach under consideration in our study. The raw
temporal EEG data are collected from the humans performing
a set of given tasks. The data is analyzed using standard signal
processing techniques plus some more specific methods, such
as the correlational, wavelet and fractals analysis. The EEG
electrodes are located in the areas of the scalp specified by
American Electroencephalographic Society Standard (in the
experimental part of our study, we use Emotiv wireless headset
with 14 electrodes located according to the Standard). The
collected EEG data corresponding to different cognitive states
and emotional responses of the human subjects are used to
feed the supervised learning models. The research relies on the
Deep Learning models with different levels of depth. The task
is to identify the most effective parameters of the learning
procedure that would allow to reliably recognizing such
emotions, considered to be basic, as anger, disgust, fear,
happiness, sadness, and surprise as well as their derivatives:
amusement, contempt, contentment, embarrassment,
excitement, guilt, pride in achievement, relief, satisfaction,
sensory pleasure, and shame. The EEG potentials reflect,
indirectly, the spatially distributed brain neuronal signals
induced by human cognitive and emotional activities. We
suggest that the information about such localized (voxel based)
data will be a better input for the Deep Learning model than
the surface cranial information since it should provide the
larger dimensionality of the supervised learning. Thus, the
two-phase model is introduced: The first phase concerns the
solution of the large scale inverse problem requiring the Big
Data representation while at the second phase the Deep
Learning model is used with the output of the first phase as its
input. Assuming a model with a given number of the cranial
measurements and a number of voxels obtained by
subdividing, uniformly, the brain volume, the task is to find
the density of the localized currents as a solution of the inverse
problem. The method called LORETA is considered to be
useful for solving the inverse problem. We work towards some
specific applications of human emotion recognition such as
Brain Computer Interface (BCI), and evaluation of
educational materials and presentations. The methodology
and the results obtained so far will be presented.

the measure of the electrical fields produced by the active
brain, is a brain mapping and neuroimaging technique widely
used inside and outside the clinical domain. Specifically, EEG
picks up the electric potential differences, on the order of tens
of $\mu V$ , that reach the scalp when tiny excitatory post-
synaptic potentials produced by pyramidal neurons in the
cortical layers of the brain sum together. The potentials
measured therefore reflect neuronal activity and can be used to
study a wide array of brain processes.

Thanks to the great speed at which electric fields propagate,
EEG has an excellent temporal resolution: events occurring at
millisecond timescales can typically be captured. However,
EEG suffers from low spatial resolution, as the electric fields
generated by the brain are smeared by the tissues, such as the
skull, situated between the sources and the sensors. As a result,
EEG channels are often highly correlated spatially. The source
localization problem, or inverse problem, is an active area of
research in which algorithms are developed to reconstruct
brain sources given EEG recordings.

There are many applications for EEG. For example, in clinical
settings, EEG is often used to study sleep patterns or epilepsy.
Various conditions have also been linked to changes in
electrical brain activity, and can therefore be monitored to
various extents using EEG. These include attention deficit
hyperactivity disorder (ADHD) disorders of consciousness
[48, 54], depth of anaesthesia [68], etc. EEG is also widely used
in neuroscience and psychology research, as it is an excellent
tool for studying the brain and its functioning. Applications
such as cognitive and affective monitoring are very promising
as they could allow unbiased measures of, for example, an
individual's level of fatigue, mental workload, mood, or
emotions. Finally, EEG is widely used in brain-computer
interfaces (BCIs)—communication channels that bypass the
natural output pathways of the brain—to allow brain activity to
be directly translated into directives that affect the user's
environment

Although EEG has proven to be a critical tool in many
domains, it still suffers from a few limitations that hinder its
effective analysis or processing. First, EEG has a low signal-to-
noise ratio (SNR) as the brain activity measured is often buried
under multiple sources of environmental, physiological and
activity-specific noise of similar or greater amplitude called
'artifacts'. Various filtering and noise reduction techniques
have to be used therefore to minimize the impact of these



noise sources and extract true brain activity from the recorded
signals.

EEG is also a non-stationary signal that is its statistics vary
across time. As a result, a classifier trained on a temporally-
limited amount of user data might generalize poorly to data
recorded at a different time on the same individual. This is an
important challenge for reallife applications of EEG, which
often need to work with limited amounts of data.

Finally, high inter-subject variability also limits the usefulness
of EEG applications. This phenomenon arises due to
physiological differences between individuals, which vary in
magnitude but can severely affect the performance of models
that are meant to generalize across subjects Since the ability to
generalize from a first set of individuals to a second, unseen set
is key to many practical applications of EEG, a lot of effort is
being put into developing methods that can handle inter-
subject variability.

To solve some of the above-mentioned problems, processing
pipelines with domain-specific approaches are often used. A
significant amount of research has been put into developing
processing pipelines to clean, extract relevant features, and
classify EEG data. State-of-theart techniques, such as
Riemannian
classifierscan handle these problems with varying levels of
success. Additionally, a wide variety of tasks would benefit
from a higher level of automated processing. For example,

geometry-based  classifiers and  adaptive

sleep scoring, the process of annotating sleep recordings by
categorizing windows of a few seconds into sleep stages,
currently requires a lot of time, being done manually by
trained technicians. More sophisticated automated EEG
processing could make this process much faster and more
flexible. Similarly, real-time detection or prediction of the
onset of an epileptic seizure would be very beneficial to
epileptic individuals, but also requires automated EEG
processing. For each of these applications, most common
implementations require domain-specific processing pipelines,
which further reduces the flexibility and generalization
capability of current EEG-based technologies.
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