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Introduction 
Agricultural useful soils in many parts of India and the world 

are slightly contaminated by presence of heavy metal toxicity. Few 
as Cd, Cu, Zn, Ni, Co, Cr, Pb, and As. This because long-term use of 
phosphatic fertilizers, sewage sludge application, dust from smelters, 
industrial waste and bad watering practices in agricultural lands [1-
3]. Toxics Link in India has been involved both at the global and the 
national level in working on the issues of mercury (Hg). Hg distribution 
in the environment has been a focus of scientific attention because of 
the potential health risks posed by Hg exposure [4].

Selenium (Se) is an essential micronutrient and has important 
benefits for animal and human nutrition, but in trace amount after 
that limit it causes toxicity in human and plants [5,6]. The presumed 
protective effect of Se against cadmium and mercury toxicity is through 
the diversion in their binding from low molecular weight proteins 
to higher molecular weight ones [7]. The Se distribution pattern was 
found to be unaffected by the presence of Hg, but the amount of Se 
assimilated was found to be higher in plants co-exposed to Hg [8].

However, until now the study of interaction of selenium and 
mercury in phaseolus vulgaris plants have not yet been reported. In 
this study, pot culture method under lab condition was used to study 
the interaction between (rajmah) selenium and mercury, which was of 
practical significance.

Materials and Method
Plant growth and metal treatment 

Seeds of phaseolus vulgaris were rinsed in running water for 2 min. 
Seeds were surface sterilized with 0.1% HgCl2 for 30 sec. and then washed 
with three times autoclaved double distill sterilized water. Sterilized seeds 
were sown on plastic pot containing 1 kg acid washed sand and 20 seeds 
per pot. Pots were placed in continuous light 30 wm–2 intensity supplied by 
fluorescent tubes at 26 ± 2ºC for 7-8 days. Half strength Hoagland solution 
without nitrogen was used for watering. Mercury Chloride (HgCl2) 
and Sodium Selenite (Na2SeO3) was used as test chemical. Different 
concentrations of the compounds were prepared (namely 0, 0.001, 0.01, 
0.1, and 1 mM) using half strength Hoagland solution as solvent. 

Metal treatment: Treatment with metal at two levels in order to 
correlate uptake, accumulation and comparison of the same with the 
following treatment schedules.

a) Seeds were treated with Hg metals for 2 hrs and 4 hrs followed
by thorough wash and subsequently planted on acid washed
sand contained in plastic pots.

b) Different concentration of metal treated acid washed sand for
24 hrs contained in plastic pots.

Leaves floating: For Hg treated soil (for 24 hrs) and seed treated 
(two and four hour) in continuous light leaf were floated on 1/4th 
strength Hoagland solution. The young two cotyledons leaves were co 
treated with selenium (c (without treatment, 0.001, 0.01, 0.1, 1mM) 
different concentration to see effect on different enzymes and correlate 
with detoxification mechanism. Incubation in continuous light inside 
“Indosan growth chamber” BOD. The leaf is then used in estimation of 
nitrate reductase in vivo and endogenous nitrate pool, peroxidase and 
catalase assay.

Nitrate reductase assay: The activity of nitrate reductase 
was estimated by in vivo nr by Srivastava [9] method with slight 
modification. Briefly About 0.25 g of leaf material were incubated with 
10 ml of incubation medium consisting of 0.1 M sodium phosphate 
buffer (pH 7.2), 0.2 M KNO3, and 25% iso-propanol in dark vial of 20 
ml capacity. The whole set was incubated in dark for 30 min at 30ºC. 
Nitrite released in the incubation mixture due to enzyme activity was 
measured by colour development by the formation of diazo compound 
with sulfanilamide and nitrate coupled with NED to give a red 
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Abstract
Mercury is known to disrupt the biological function in plants by inhibiting their growth and developmental process, 

while selenium (Se) is an essential micronutrient within the appropriate amount. This paper is aimed to study co 
application and interactive effects of selenium (Se) and mercury (Hg) on the Nitrate Reductase NR (such as in-vivo 
and endogenous) and the antioxidant system through a pot experiment and clarify the possible mechanism how 
Se alleviates the toxicity of Hg. The observations indicate that when selenium applied after mercury exposure the 
enzyme activity enhanced hence Se may reduce the toxic level of Hg in phaseolus vulgaris.
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dye. The absorbance was read at 540 nm after 20 min by using UV-
spectrophotometer. 

Endogenous nitrate pool in the leaf segments were estimated 
according to Aslam [10]. 20 ml incubation buffer containing 0.1 M 
phosphate buffer and 25% isopropanol. Incubated for one hour at 30ºC. 
It was mixed with sulfanilamide and NED. After 20-25 min the reading 
is taken at 540 nm.

Antioxidant enzyme: Peroxidase was estimated according to 
Maehly [11]. The leaf tissue was extracted in Phosphate buffer (pH 6.8) 
at 0-4°C. The reaction mixtures contained distill water, 0.1 M buffer, 
0.22% Guaiacol, 3% Hydrogen peroxide and enzyme. POD catalyses 
the transformation of guaiacol to tetraguaiacol (brown product). The 
oxidation of guaiacol was measured by the increase in absorbance at 
436 nm for 1 min.

Activities of catalase (EC 1.11.1.6) was assayed in fresh leaf tissue 
extracts by using a modification of the method of Zhou, 2001 and 
Zhang, 1990 as mentioned in Cui and Wang, 2006 [12-14] with slight 
modification. Briefly, the samples were prepared for catalase analysis 
by homogenization of fresh tissue with a mortar and pestle in a buffer 
solution containing 0.2M buffer (pH 7.8). After the homogenate was 
centrifuged at 10,000 rpm for 20 min at 4°C, the supernatant was 
used immediately to determined catalase activity by monitoring the 
disappearance of H2O2 by measuring the decrease in absorbance at 240 
nm of a reaction mixture containing 0.1M H2O2, 0.2M buffer solution 
(pH 7.8), deionized water and enzyme extract. Catalase activity was 
expressed as μmol of H2O2 decomposed per min per gram of fresh 
weight (μ mol/min/g FW).

Statistical Analysis
Each experiment was repeated at least thrice and data presented are 

the average value and standard deviation value of findings. Statistical 
data collected from one-way ANOVA test software.

Results
Sand treated 

In vivo NR and endogenous NR: During in vivo, Supply of Hg in 
sand 1mM shows significant (<0.001) inhibition than followed by 0.01, 
0.001 mM as compared to control. Whereas when Se supplied with Hg 
(co-exposure) it enhanced activity with increase in concentration. As 
compared to control maximum enhanced activity in 1mM with 194 % 
time was observed (Table 1).

During endogenous NR, Supply of mercury shows significantly 
decrease in activity at 0.1 mM followed by 1 and 0.001 mM conc. 
Whereas in compared to Se treatment with Hg maximum activity was 
found in 0.001mM concentration with 212 % times then followed by 
0.01, 0.1 and 1 mM (Table 1).

Antioxidant enzymes: During peroxidase, a concentration 
dependent activity of peroxidase was observed from 0.001 to 0.1 mM 
of Hg. The activity slightly inhibited in 0.01 and 0.1 mM in sand treated 
with Hg. This enzyme activity enhanced in presence of selenium and 
0.1 mM concentration with 221% times followed by 1 mM with 169% 
maximum activity was observed (Table 1).

During catalase, Supply of Hg in sand treatment shows more 
inhibition in 0.01 mM than followed by 0.1 in compare to control. Se 
with mercury shows maximum inhibition in 0.01 mM with 159 % times 
and minimum in 1 mM concentration as compared to control (Table 1).

Seed treatment

In vivo NR and endogenous NR: In two hour 1 mM concentration 
shows significant inhibition (<0.001) than followed by 0.01 and 0.1 mM 
whereas in four hour 0.01 mM concentration shows more significantly 
enzyme inhibition. When Se supplied with mercury, activity enhanced 
with increase in concentration (Table 2). 252% times increased activity 
was found in 0.1 mM then 0.01mM with 227% in two hour seed 

s.no
conc in 

mM

Nr in vivo Hg
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr in vivo Hg+Se
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr Endo Hg
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr Endo Hg+Se
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Peroxidase 
Hg(mg enz./

ml original sol /
protein) fresh 

weight

Peroxidase 
Hg+Se(mg enz./
ml original sol /
protein) fresh 

weight

Catalase Hg(µ 
mol/min/gm 
fresh weight

Catalase (µ 
mol/min/gm 
fresh weight 

Hg+Se

c 68.56 ± 13.84 40.18 ± 0.21 16.18 ± 1.54 42.87 ± 3.76 2.02 ± 0.18 1.3 ± 0.21 49.68 ± 4.56 33.82 ± 12.41
0.001 12.85 ± 15.66** 58.34 ± 10.07** 10.86 ± 1.73** 91.06 ± 6.48** 1.03 ± 0.18** 1.52 ± 0.18 41.66 ± 18.81 44.46 ± 13.22
0.01 64.50 ± 35.59* 65.68 ± 5.73** 15.59 ± 1.33 90.36 ± 6.38** 1.66 ± 0.07** 1.23 ± 0.25 49.34 ± 4.42 53.87 ± 13.04
0.1 35.26 ± 11.47 76.89 ± 3.68** 22.06 ± 0.63** 80.01 ± 7.63** 1.44 ± 0.15** 2.88 ± 0.15** 47.62 ± 4.65 23.54 ± 8.08
1 11.19 ± 4.38** 77.96 ± 0.62** 10.72 ± 1.20** 37.32 ± 4.97 0.99 ± 0.06** 2.2 ± 0.27** 45.13 ± 4.49 12.03 ± 2.17

*=p<0.05 **=p<0.01
Table 1: When mercury concentration supplied to sand and comparisons of this values to when mercury treated sand, excised leaf was treated with selenium different 
concentration i.e. co-exposure of selenium with mercury during sand treatment. 

s.no
conc. in 

Mm

Nr in vivo Hg
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr in vivo Hg+Se
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr Endo Hg
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr Endo Hg+Se
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Peroxidase 
hg(mg enz./ml 
original sol /
protein) fresh 

weight

Peroxidase 
hg+Se(mg enz./
ml original sol /
protein) fresh 

weight

Catalase Hg(µ 
mol/min/gm 
fresh weight

Catalase (µ 
mol/min/gm 
fresh weight 

Hg+Se

C 60.62 ± 11.39 14.13 ± 0.36** 18.58 ± 0.56 28.37 ± 0.92 0.21 ± 0.01 0.76 ± 0.25 38.88 ± 3.33 24.07 ± 0.51
0.001 74.54 ± 13.05 30.77 ± 0.02** 7.99 ± 0.79** 42.60 ± 0.55** 0.21 ± 0.01 2.34 ± 0.27** 35.27 ± 5.46 18.3 ± 0.4**
0.01 24.55 ± 4.18** 32.15 ± 1.75** 4.73 ± 0.60** 17.61 ± 1.13** 0.21 ± 0.01 1.24 ± 0.02 32.81 ± 6.12 31.29 ± 0.88**
0.1 11.46 ± 14.67** 35.71 ± 0.18** 28.57 ± 0.22** 27.56 ± 1.09 0.21 ± 0.01 1.74 ± 0.25** 31.68 ± 6.8 32.95 ± 0.87**
1 30.73 ± 3.81** 21.38 ± 1.07** 0.84 ± 0.36** 22.62 ± 0.93** 0.09 ± 0.05** 0.81 ± 0.12 16.95 ± 0.52** 27.92 ± 0.48**

*=p<0.05 **=p<0.01
Table 2: When mercury concentration supplied to seed two hour and comparisons of this values to when mercury treated seed (two hr.), excised leaf was treated with 
selenium different concentration i.e. co-exposure of selenium with mercury.
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treatment whereas in four hour activity shows constant result in all 
concentration (Table 3).

Hg inhibited endo nr activity in seed treated two hour at 0.1 
mM concentration whereas in four hour 0.001 mM concentration 
significantly (Tables 2 and 3). When Se supplied with mercury, 
enhanced activity in 0.001 then 0.1mM concentration was observed 
during two hour seed treatment in comparison to this four hour seed 
treatment shows maximum activity in 0.001 mM than 0.1 and 0.01 mM 
concentration (Tables 2 and 3).

Antioxidant enzymes: Peroxidase activity when Hg treatment supplied 
to seed with two hour only in 1mM conc shows significantly increase in 
activity whereas in four hour 71 times more fold inhibition in 0.1mM 
followed by 0.001mM conc. or least inhibition in 0.01 mM conc. When Hg 
was co exposure supplied with selenium, peroxidase activity at 0.001 mM 
and 0.1mM shows more inhibition and 100 times more enhanced activity 
than control in both two hour and four hour (Tables 2 and 3).

During catalase activity, when only Hg treatment was given during 
seed treatment with two hour only in 1mM conc shows significantly 
decrease in activity whereas in four hour 93 times more fold inhibition 
in 0.01mM followed by 0.001mM conc. or least inhibition in 0.1 mM 
conc. When co exposure with Se mercury treatment supplied the 
activity enhanced and shows more detoxification. During two hour 0.1 
mM shows more inhibition than 0.01mM, 0.001mM and 1 mM with 
compare to control. During four hour, 0.01 mM and 0.1mM shows 
more inhibition (Tables 2 and 3).

Discussion and Conclusion 
Obtained from the present study showed reduced enzyme activity 

under Hg stress which might be associated with inhibited contribution 
of essential component required for the particular enzyme activity of 
plant. Similar research also done earlier for identify mercury toxicity 
on plants or ecosystem. The growth pattern of phaseolus seedlings in 
the presence of Hg was different from pea and spear mint [15], ryegrass 
[16,17], tomato [18], Sesbania grandiflora [19], Mentha arvensis [20]. 

The activities of anti-oxidative enzymes in the seedlings of Phaseolus 
aureus found that effects of Hg and cadmium (Cd) had little primary 
damaging effect on membranes [21]. Antioxidant effect of HgCl2 was 
in selected plant Clitoria ternatea L. It increases H2O2 content and the 
antioxidant enzyme activities such as superoxide dismutase (SOD), 
catalase (CAT), and peroxidase (POD) were observed in HgCl2 treated 
plants when compared with control [22].

Hg causes phyto toxicity and oxidative stress in wheat (Triticum 
aestivum L.) plants [23]. Plants treated with higher concentration of 
Hg were subjected to comparatively greater oxidative damage and 
demonstrated that the antioxidative components were not able to remove 

the stress due to higher concentration of Hg and thus might affect the 
productivity in plants. Hg also showed inhibition property towards physi
ological parameters such as chlorophyll, protein, nitrate, and endogenous 
pool. Higher concentrations of HgCl2 were found to be more toxic [24]. 

The selenium content and species of both plant and animal 
foodstuffs depend on environmental conditions, in particular, 
the quantity and species of selenium to which the animal/plant is 
exposed. Selenomethionine is predominant in cereals, and selenium 
concentrations vary from 0.01 to 0.55 lg/g fresh weight [25], whereas in 
other plant foods the content is generally lower. Se existence supports 
the expression of the selenoprotein, which have important antioxidant 
and detoxification function [26]. These forms of selenium can combine 
with Hg2+ to form insoluble Hg-Se complex in rice root surrounding 
environment or root surface [27]. 

Co-exposure of Se with Hg enhanced NR enzyme activity and 
improved antioxidant mechanisms seedlings which could be attributed 
to their synergistic effect and the role of Se to regulate the plant growth 
and detoxifying mercury toxicity.

The interaction between mercury (Hg (II)) with selenium Se (VI) 
and Se (IV) in Tomato (Lycopersicum esculentum) experimented in 
Sand and soil culture resulted in Decreases Hg uptake [28]. Another 
study shows that Hg (II) and Se (VI) and Se (IV) in Radish plants 
(Raphanus sativus) performed in Pot culture decreases Hg uptake and 
possibly forms Hg-Se insoluble complex in soil [29]. Mercury Hg (II) 
Se (IV) in Glycine max (soybean) experimented with Soil and a 50:50 
mix of soil and ProMix resulted forms a high molecular weight entity 
containing Se and Hg in plants [8].

Se may play an important role in limiting the bioaccessibility, 
absorption, and translocation/bioaccumulation of mercury in the aerial 
rice plant, which may be related to the formation of an Hg-Se insoluble 
complex in the rhizospheres and/or roots [30].

Se antagonistic study with other heavy metal also studied such as 
arsenic, cadmium etc. Arsenic interaction with Se in Hydroponic culture 
and found that decreases As uptake and lipid peroxidation; enhances 
levels of antioxidants, chlorophyll, MTs, thiols and GST; increases 
cellular viability, and rebuilds membranes. Enhances As concentration, 
Se induces more production of thiols and GSH to counterbalance the 
negative effects of increased As and inhibits lipid peroxidation in Pteris 
vittata L [31,32]. In Garlic (Allium sativum) found decreases Cd uptake 
and stimulates growth of root and seedlings. Another study in Rape 
(Brassica napus L., Polish genotype cv. Bojan) and wheat (Triticum 
aestivum, Polish genotype cv. Kamila and a Finnish genotype cv. Manu) 
results shows Promotes growth, reduces lipid peroxidation, enhances 
membrane stability, and counterbalances the Cd-induced changes in 
nutrients [33,34] (Figures 1-3).

s.no
conc. in 

Mm

Nr in vivo Hg
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr in vivo 
Hg+Se

(μ mol NO2/hr/g) 
fresh weight)

Mean ± SD

Nr Endo Hg
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Nr Endo Hg+Se
(μ mol NO2/hr/g) 

fresh weight)
Mean ± SD

Peroxidase 
hg(mg enz./ml 
original sol /
protein) fresh 

weight

Peroxidase 
hg+Se(mg enz./
ml original sol /
protein) fresh 

weight

Catalase Hg(µ 
mol/min/gm 
fresh weight

Catalase (µ 
mol/min/gm 
fresh weight 

Hg+Se

C 69.66 ± 18.94 36.11 ± 0.07 9.79 ± 2.37 32.19 ± 1.07 1.58 ± 0.35 1.2 ± 0.51 45.91 ± 1.08 17.76 ± 3.18
0.001 47.51 ± 15.30 36.33 ± 0.04 19.62 ± 2.30** 37.68 ± 0.81** 0.48 ± 0.15** 2.56 ± 0.3 47.39 ± 1.19 20.76 ± 2.74
0.01 29.36 ± 3.51** 36.26 ± 0.08 6.85 ± 2.32 27.32 ± 1.52** 1.19 ± 0.3 1.48 ± 0.21 47.76 ± 1.01 26.1 ± 2.15
0.1 63.93 ± 11.69 36.22 ± 0.18 8.14 ± 2.31** 33.82 ± 0.97 0.64 ± 0.25** 2.36 ± 1.31 3.22 ± 0.4** 21.34 ± 3.45
1 No growth

*=p<0.05 **=p<0.01
Table 3: When mercury concentration supplied to seed (four hours) and comparisons of this values to when mercury treated seed (four hours) excised leaf was treated with 
selenium different concentration i.e. co-exposer of selenium with mercury during seed (four hours) treatment. 
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The robust data presented in the above work shows that co-exposure 
of Se is more effective in the alleviation of Hg stress. Improved Hg 
tolerance in the presence of Se involves physiological, and biochemical 
interaction in a synergistic or additive way. Therefore, the present 
study gives a new strategy to minimize the Hg toxicity in crop plants, 
especially in rajmah (phaseolus vulgaris) using beneficial application of 
Se as protective mechanism against mercury toxicity.
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