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Abstract
Mesenchymal stem cells in the bone marrow have attracted great interest over the past decades, not only as a 

basic scientific subject but also as a novel and advanced clinical tool. More than 100 mesenchymal stem cell-related 
clinical trials are currently registered in the world. Hematopoietic stem cells in bone marrow are extremely radiation-
sensitive, whereas mesenchymal stem cells show considerable radiation-resistance. Intrinsic cellular mechanisms, 
including highly efficient reactive oxygen species-scavenging ability and active DNA damage response pathways, 
have been reported to explain the radiation-resistance of mesenchymal stem cells in the bone marrow. The precise 
interactions between residual host mesenchymal stem cells and donor mesenchymal stem cells at the time of bone 
marrow transplantation following whole-body irradiation, however, remain unknown. This short review summarizes 
our current understanding of the clinical impact of the radiation-resistance of endogenous mesenchymal stem cells 
in the bone marrow.
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Introduction
Human bone marrow contains at least two distinct types of stem 

cells [1] in terms of sensitivity to radiation. Hematopoietic Stem 
Cells (HSCs) are extremely sensitive to radiation [2,3], whereas 
Mesenchymal Stem Cells (MSCs) are highly resistant to radiation-
induced damage [4,5]. Exposure of bone marrow to radiation leads to 
the rapid depletion of radio-sensitive HSCs and their progenitors, and 
hematopoietic failure presenting with pancytopenia [3]. Bone marrow 
transplantation is a useful clinical treatment for this hematopoietic 
failure. Engrafted donor HSCs may home to the most appropriate sites, 
created by depletion of the host HSCs and their progenitors, and then 
reconstruct hematopoiesis. Host MSCs that survive radiation exposure 
support the regeneration of the donor hematopoietic system [6], 
although the underlying mechanism is unclear. MSCs are considered 
key components of the HSC niche, a specialized microenvironment 

that regulates the maintenance of HSCs and the production and 
maturation of hematopoietic progenitors [6]. Because MSCs are also 
present as minor components in transplanted bone marrow cells, donor 
MSCs are likely to meet and interact with the host MSCs in the patient’s 
bone marrow, as illustrated in figure 1. This short review focuses on our 
current understanding of the biologic relevance of radiation resistance 
of host MSCs in bone marrow based on the clinical outcome, while 
pointing out unresolved questions to facilitate further research in this 
field.

MSC Basics
The term “mesenchymal stem cell” has been traditionally used for 

heterogeneous cell populations with a rather blurred broad definition. 
MSCs were originally isolated from the bone marrow [7,8], and then 
considered to be present in virtually all postnatal organs and tissues 
[9]. The International Society for Cellular Therapy defines that human 
MSCs must be plastic adherent when maintained in vitro and be able 
to differentiate into osteoblasts, adipocytes, and chondroblasts in 
standard differentiating cell culture conditions [10]. In addition, the 
MSC population must express CD73, CD90, and CD105, and lack 
expression of hematopoietic markers such as CD14, CD34, CD45, and 
HLA-DR [10]. Thus, the definition of MSCs is not directly applicable to 
in vivo cells. Accordingly, the in vivo identity, physiologic function, and 
biologic properties of MSCs have been investigated mainly by systemic 
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Figure 1: Replacement of radiation-sensitive HSCs by bone marrow 
transplantation, while maintaining radiation-resistant MSCs. Sensitive 
host HSCs (open circles) were effectively replaced by donor HSCs (closed 
circles), whereas resistant host MSCs (open boxes) rejected replacement by 
the donor MSCs (closed boxes).
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In vivo animal model study

The radiation resistance of MSCs has been also demonstrated 
in in vivo animal model studies. In a pig model, the mandible was 
subjected to fractionized radiation of 2 × 9 Gy within 1 week [32]. This 
treatment corresponds with that of a standardized clinical treatment 
regimen of head and neck cancer patients fractionally-irradiated with 
30 × 2 Gy. Isolation of MSCs at different time-points post-irradiation 
revealed no significant differences regarding the proliferation capacity 
and osteogenic differentiation potential. These findings imply that 
MSCs can effectively cope with higher doses of irradiation in vivo. 
In a murine model, the radiation sensitivity of HSCs and MSCs was 
compared using a flow cytometry-mediated prospective identification 
method [18]. HSCs were almost undetectable at 10 days after whole-
body irradiation at a dose of 10.5 Gy, whereas a significant number 
of MSCs remained in bone marrow on the same day. Approximately 
71% of freshly isolated MSCs of non-irradiated bone marrow were in 
the G0 phase, which could have protected them from lethal irradiation 
by escaping the cell cycle-mediated apoptotic program [18]. In 
another murine model, mouse MSCs isolated from flushed bone 
marrow aspirates were more radio-sensitive than those isolated from 
collagenase-digested bone marrow [33]. These findings suggest that 
MSCs in mouse bone marrow are not uniform, but heterogeneous. 
Therefore, more attention should be paid to the isolation procedures 
of MSCs from mouse bone marrow. 

Clinical Relevance of Radiation Resistance of MSCs 
Deduced from Preclinical Study
Uncertainty of the functional quality of surviving endogenous 
MSCs

The detailed properties of radiation-surviving endogenous MSCs 
are not well documented in human or animal studies. It is quite uncertain 
whether they can perform usual functions in vivo even after exposure 
to life-threatening ionizing radiation. For example, in an in vitro study, 
MSCs are considered to be sources of tumorigenic cells due to the 
acquisition of some genetic modifications such as telomere shortening 
by non-life-threatening low dose radiation exposure, though these 
findings were not confirmed in vivo [34]. The physiologic properties of 
surviving MSCs after a life-threatening dose of radiation are more likely 
to differ significantly from those before radiation exposure, despite 
their having an active DNA damage responding pathway.

Consequences of functionally depleting endogenous HSC 
niches in bone marrow

MSCs are considered to be part of the HSC niche in the bone 
marrow [6]. Although selective depletion of MSC functions in bone 
marrow has not yet been achieved, an interesting observation was 
made using diphtheria toxin receptor-mediated selective depletion of 
other defined HSC niche cells, which are called CXC chemokine ligand 
12- abundant reticular (CAR) cells [35]. The CAR cells are primary 
mesenchymal cells with the ability to differentiate into adipocytes as 
well as osteoblasts, which may be functionally identical to MSCs. HSCs 
from CAR cell-depleted mice were reduced in number and cell size, 
were more quiescent, and had increased expression of early myeloid 
selector genes. Thus, a niche composed of adipo-osteogenic progenitors 
is required for the proliferation of HSCs and lymphoid and erythroid 
progenitors, as well as maintenance of HSCs in an undifferentiated 
state [35]. Accordingly, radiation-damaged host MSCs may similarly 
influence the donor HSCs.

transplantation of in vitro-cultured cells [11]. Clinical application also 
requires ex vivo cell amplification due to the low content of MSCs in 
the bone marrow (0.001%-0.01% of total nucleated cells) [12], even 
though the culture conditions may modify cellular properties, as 
reported for mouse MSCs [13]. The notion of in vivo MSCs, therefore, is 
rather indirect and hypothetical, leading to gaps in our understanding. 
Furthermore, unlike human MSCs, mouse bone marrow-derived MSCs 
have significant limitations in isolation by their adherence to plastic, 
mostly due to frequent contamination of cultures by hematopoietic 
cells [14-17]. To overcome this, a methodology was recently developed 
to selectively isolate a pure population of mouse MSCs directly from 
bone marrow cells based on surface marker expression [18,19]. An in 
vivo identification method of MSCs still needs to be developed.

Radiation Resistance of MSCs in Bone Marrow
Clinical observations

Differences in radiation sensitivity among bone marrow cells 
were originally noted in several clinical reports [20-25]. In patients 
surviving a long time after allogeneic bone marrow transplantation 
following whole body irradiation, the origin of the two stem cells, HSCs 
and MSCs, in the bone marrow tends to be significantly different. To 
identify the origin of the two types of stem cells, genetic markers such 
as a variable number of tandem repeats in the genomic DNA, which can 
discriminate origin of stem cells, were used for sex-matched cases [26] 
and Y-chromosome specific nucleotide sequences were used for sex-
mismatched cases [27]. HSCs were found to derive mostly from donors, 
whereas MSCs derived mostly from the host. These observations were 
assumed to reflect an inherent difference in the radiation sensitivity 
of each type of stem cell, namely radio-sensitive host HSCs were 
effectively replaced by donor HSCs, whereas radio-resistant host MSCs 
rejected replacement by donor MSCs. Interestingly, pediatric patients 
who receive allogeneic bone marrow transplantation show mixed 
chimerism, indicating successful engraftment of donor MSCs [28]. The 
exact mechanism underlying the easier engrafting of donor MSCs in 
childhood compared with adulthood, however, remains unclear. MSCs 
in childhood are still actively proliferating to increase their number 
[29], and this might enhance their radio-sensitivity, leading to easier 
depletion of host MSCs and higher efficiency in the engraftment of 
donor MSCs.

In vitro culture study

The radiation resistance of MSCs isolated from human bone 
marrow has also been demonstrated in in vitro culture studies [4]. In 
these studies, cells showed considerable in vitro radiation resistance 
compared with so-called radiation resistant cell lines, such as A 549 lung 
cancer cells [4]. MSCs have several cellular mechanisms, such as highly 
efficient reactive oxygen species-scavenging ability and avoidance of 
cell death by active DNA damage response pathways, including cell 
cycle arrest and DNA repair [4,5,30]. Interestingly, MSCs isolated 
from different anatomic bone marrow sites display variable responses 
to ionizing radiation treatment [31]. MSCs derived from maxillary 
and mandibular trabecular bones are more radiation-resistant than 
those derived from the iliac crest. MSCs isolated from the maxilla and 
mandibular trabecular bones induce higher p21 expression, which is 
known to inhibit apoptosis and harborless DNA damage after ionizing 
radiation exposure. The induction of p21 expression is considered to 
activate a robust G1 arrest and DNA repair mechanisms. It remains 
unclear, however, whether or not MSCs isolated from other organs or 
tissues have similar radiation resistance.
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Lack of evidence regarding direct interactions between 
surviving host MSCs and donor MSCs

Although many reports indicate in vivo or in vitro interactions of 
exogenous MSCs with various endogenous surviving cell types, there is 
no report concerning direct interaction between host MSCs and donor 
cells, including MSCs. This is probably due to technical difficulties or 
due to a lack of interest in this subject. It is worthwhile to point out here a 
current trend in stem cell biology to intensively investigate interactions 
between host stem cells and donor stem cells. Emerging concepts 
propose that transplanted-stem cells act to initiate and stimulate host 
stem cell-based tissue repair, rather than directly participating in the 
repair processes [36,37]. 

Non-hematopoietic antigen-presenting cells are sufficient to 
induce lethal acute Graft-versus-Host Disease

Graft-versus-Host-Disease (GVHD) is a potentially life-threatening 
complication and a major limitation of allogeneic hematopoietic stem 
cell transplantation outcome [38]. This complication is thought to be 
initiated by the activation of mature donor CD4+ T-cells that are co-
infused with the hematopoietic stem cell transplant. CD4+ T-cells 
recognize target alloantigens presented on major histocompatibility 
complex molecules expressed on the antigen-presenting cells that 
reside somewhere within the host tissues [39]. Upon alloantigen 
recognition, donor CD4+ T-cells become activated, expand, and induce 
cytotoxic effects on target organs, including the skin, gut, and liver 
[40]. Although it has been established that recipient dendritic cells 
are the major antigen-presenting cells expressing allogeneic peptides 
on their surface [39,41], recent evidence indicates that only non-
hematopoietic recipient cells surviving radiation exposure can induce 
experimental lethal acute GVHD by expressing allogeneic antigens 
[42]. Because of the properties of MSCs described in previous reports, 
some bone marrow MSCs surviving after ionizing radiation exposure 
might represent the GVHD-causing allogeneic antigen presenting 

cells. Importantly, the immunomodulatory functions of MSCs can be 
converted to suppressing or promoting functions, depending on the 
conditions surrounding them [43,44]. Thus, the clinical relevance of 
surviving endogenous MSCs might be stochastic in bone marrow, as 
illustrated in figure 2.

Future Perspectives Regarding the Radiation Resistance 
of MSCs

MSCs are now considered as advanced therapy medical products by 
the European Medicines Agency by regulation No. (EC) 1394/2007 of 
the European Commission [45,46]. Product approval has been granted 
for the treatment of pediatric GVHD in Canada and New Zealand 
(Prochymal®; Osiris Therapeutics, Columbia, MD). Clinical-grade 
large-scale expansion of MSCs is currently available [47-49], supporting 
more than 100 MSC-related clinical trials registered at http://www.
clinicaltrials.gov/. To improve the clinical effectiveness of the MSCs, 
it will be important to understand the interactions between these 
therapeutic exogenous MSCs and endogenous MSCs. In particular, the 
immunomodulatory properties of MSCs are suggested to be a double 
edged-sword [43,44]. Thus, it might be necessary to carefully monitor 
the functional status of endogenous MSCs and to precisely control 
them to achieve maximal therapeutic effects of the exogenous MSCs.

Besides hematopoietic regeneration, the radiation resistance of 
MSCs might be problematic in cases of radiation therapy. MSCs are also 
regarded as a key component of the tumor stroma, which promotes not 
only tumor growth, but also angiogenesis and metastasis [50,51]. Thus, 
the regulation and control of radio-resistant MSCs in the bone marrow 
might be a critical issue to be addressed in radiation therapy. 

Adult mouse MSCs prospectively purified from bone marrow by 
flow cytometry were recently demonstrated to be suitable sources for 
highly efficient generation of high quality induced pluripotent stem 
(iPS) cells compared to other somatic cells such as fibroblast cells [52]. 
The iPS cells derived from MSCs appear to be the closest equivalent 
of the embryonic stem cells based on the gene expression profile and 
germline-transmission efficiency. Therefore, in the case of severe 
radiation emergency accidents, especially whole body irradiated cases, 
radiation-resistant MSCs with high efficiency in the generation of iPS 
might be the best choice for autonomous regenerative medicine in the 
future.
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