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ABSTRACT
Background: Low-intensity Continuous Ultrasound (LICUS) therapy heals soft tissue injuries. It alleviates acute and chronic 
musculoskeletal pain by activating multiple healing processes through its diathermic and mechanotransductive properties. 
Diclofenac has been FDA-approved as a Non-Steroidal Anti-Inflammatory Drug (NSAID). It is an analgesic and anti-
inflammatory drug available in oral and topical forms. Adding 2.5% diclofenac sodium to ultrasound coupling gel improves 
ultrasound penetration deeper into the tissue without altering the diathermic and acoustic properties of LICUS and the 
analgesic effects of diclofenac sodium with no undesired adverse effects. 

Objective: To determine the effects of adding 2.5% diclofenac sodium to standard aqueous ultrasound gel on the ultrasound 
coupling and diathermic properties of a long duration Sustained Acoustic Medicine (SAM) treatment.

Methods: In a two-phase study, first, the acoustic and diathermic changes were determined in bovine tissue during 4-hour-long 
SAM stimulation at 1 cm, 2 cm, and 5 cm with aqueous and 2.5% diclofenac ultrasound couple patch. Then, in the second 
phase, the heating profiles were recorded with and without 2.5% diclofenac gels in 54 healthy adult subjects at the forearm 
and calf during the SAM treatment.

Result: The addition of 2.5% diclofenac sodium significantly increased coupling gel density, acoustic impedance, and signal 
propagation (p<0.0001) with little or no effect diathermic profiles at 1 cm, 2 cm, and 5 cm depth. The coupling gel with 2.5% 
diclofenac sodium sustained the therapeutic ultrasound intensity longer than the aqueous coupling gel (5.5 cm relative to 4.5, 
p<0.0009). No significant diathermic difference was recorded on the calf and forearm skin with a 2.5% diclofenac ultrasound 
patch.

Conclusion: Adding 2.5% diclofenac sodium to ultrasound gel increases acoustic impedance, improves ultrasound signal 
coupling into deep tissue, and provides longer sustained deep tissue heating without negatively impacting the diathermic 
profile during SAM treatment.
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INTRODUCTION

Low-Intensity Continuous Ultrasound (LICUS) therapy is 
increasingly used to heal soft tissue injuries and relieve pain in acute 
and chronic musculoskeletal ailments [1-4]. Ultrasound penetrates 
the damaged tissue to enhance the healing process by several 

mechanisms, including diathermy and mechanotransduction [5-
8]. The localized increase in the temperature, cellular migration, 
and biomolecular activity enhances circulation, vasodilation, 
oxygenation, and nutrient exchange, boosting cellular metabolism 
and tissue regeneration [6-11]. The LICUS is transmitted at 
frequencies between 1 and 3 MHz at intensities of less than 0.5 
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W/cm2 for 10 minutes to 4 hours [4,12]. The consistent and 
soothing vigorous heat penetrates deep into connective tissue 
and muscles with little to no adverse effects on the tissue [9,13]. 
The application of low-intensity ultrasound between 2-20 MHz is 
also used in clinical diagnostic and imaging purposes, depending 
on the application and target tissue. The diagnostic and imaging 
use of ultrasound relies on the difference in acoustic impedance 
of tissues. The use of High-Intensity Focused Ultrasound 
(HIFUS) uses>10 W/cm2 intensity, generating localized heating, 
more commonly applied in targeting solid tumors. The HIFUS 
can be used as an alternative to invasive surgery [14]. Diclofenac 
Sodium is a broadly used Non-Steroidal Anti-Inflammatory Drug 
(NSAID). It is an analgesic, anti-inflammatory, and antipyretic 
agent [15]. It acts by inhibiting cyclooxygenase-1 and 2, regulating 
the production of prostaglandin and various pro-inflammatory 
biomarkers, including Tumor Factor alpha (TNFα), Interleukin-6 
(IL-6), and Interleukin-8 (IL-8) [16]. Topical diclofenac has been 
shown to be efficacious in osteoarthritis, rheumatic arthritis, and 
soft tissue pain injuries such as sprains, ligament partial or total 
rupture, and contusions [16]. Oral diclofenac has been shown 
to have adverse vascular and gastrointestinal effects, and the 
efficacy of topical diclofenac is limited due to limited penetration 
through the skin tissue [15,17,18]. The ultrasound acoustic 
waves are generated by a piezoelectric element and require 
a dense medium to travel. Viscous ultrasound gel facilitates 
acoustic wave transmission from the transducer to the target 
tissue. The presence of the dense impedance-matched medium 
allows the transmission of acoustic vibration to the tissue with 
little or no loss of acoustic energy and intensity. In addition, 
the localized acoustic force can provide essential mechanical 
and thermal stimulation to increase profusion, porosity, and 
cellular activity [19,20], thereby synchronizing ultrasound’s 
mechano-transduction and diathermic properties along with 
topical NSAID application benefits [19,21,22]. The United States 
Food and Drug Administration (FDA) has cleared Sustained 
Acoustic Medicine (SAM) for treating musculoskeletal injuries. 
SAM provides low-intensity continuous ultrasound at 1.3 W and 
0.132 W/cm2, which equates to about 5,000 Joules per hour or 
just under 20,000 Joules for a typical 4-hour treatment session 
[10,21,23]. The meta-analysis by Winkler, et al. demonstrated 
the clinical efficacy of the SAM in numerous musculoskeletal 
disorders, including myofascial pain, rotator cuff tendinopathy, 
knee osteoarthritis, and upper shoulder and neck pain [23]. 
In addition, Uddin, et al. have elaborated on the underlying 
mechanism of LICUS and SAM in multiple pathologies such 
as traumatic bone fracture, osteoarthritis, thrombosis, and pain 
management [6]. 

The use of SAM with diclofenac ultrasound gel has been 
reported by Madzia et al. The SAM treatment with 1% topical 
diclofenac significantly alleviated the osteoarthritis-induced 
pain and improved Western Ontario McMaster Outcome 
(WOMAC) after 7 days of treatment [24]. The treatment efficacy 
and improved outcomes were attributed to the diathermic and 
mechanotransducive abilities of the SAM treatment over a 4-hour 
time. Jarit, et al. presented the use of SAM with 2.5% diclofenac 
in the treatment of musculoskeletal injuries that failed to 
respond to physical therapy [25]. After 4-weeks of daily home use, 
patients reported a significant pain reduction, global health, and 

functional improvement with SAM treatment. This study aims 
to determine the ultrasound coupling and diathermic effects of 
adding 2.5% diclofenac sodium to the ultrasound coupling patch 
in the SAM treatment system. 	

MATERIALS AND METHODS

Instrumentation

The FDA-cleared SAM device (model sam-12, ZetrOZ Systems 
LLC., Trumbull, CT) consists of a pair of small rechargeable 
wireless transducer heads, clipping onto an adhesive patch pre-
loaded with either standard coupling ultrasound gel or 2.5 w/v 
diclofenac coupling patch. Adhesive patches are directly applied 
to the skin above the treatment area. The SAM device provides 
continuous low-intensity continuous ultrasound at 0.132 W/cm2 
for a 4-hour treatment delivering 18,720 joules at 3MHz with 
0.65W of power from a 5 cm2 radius transducer head. 

Laboratory methods

Intensity measurement: The therapeutic intensity in bovine 
tissue at different depths was measured using a hydrophone 
with both coupling gels. A3 MHZ, 4-cycle, a sinusoidal signal 
was generated from a Tektronix function generator (model 
AFG3021B) and ran through a SAM piezoelectric transducer 
creating a simulated ultrasound signal similar to the sam-12 
device. An ONDA Hydrophone (model HNR-1000) was used to 
measure and record the signal output at different depth levels 
using a Tektronix oscilloscope (model TDS2014B).

The bovine tissue was sliced into 1 cm, 2 cm, 3 cm, and 4 cm, 
and 5 cm thickness, 5 cm diameter discs, 6 per measurement. 
The bovine tissue was placed between an active transducer and 
the hydrophone and coupled to both pieces using coupling 
ultrasound gel. The signal was recorded via the hydrophone 
and input to an oscilloscope, where the intensity was displayed 
and recorded. The intensity measurements were recorded with 
aqueous coupling gel and with 2.5% diclofenac coupling gel. The 
data was displayed on a graph found in the results section below. 
The effect of 2.5% diclofenac on the speed of sound and acoustic 
impedance was also quantified using a similar experimental setup 
without the bovine tissue, as shown in Figures 1A and 1B. The 
hydrophone was held at a stable, constant distance from the 
piezo transducer face outputting a consistent ultrasound signal 
by a preprogramed oscilloscope. Ultrasound gel was inserted 
between the transducer face and the hydrophone tip. The 
signal was generated and recorded by the same oscilloscope at 
two different independent channels concurrently, and the time 
delay was recorded. The speed of sound was calculated using the 
Equation below using the experimental setup in Figures 1A and 
1B (Figures 1A and 1B). 

………………………………………………………….. (1)

speed of sound=(distance (meters))/( time delay (seconds) )

The speed of sound was used to calculate the acoustic impedance 
based on density determined with a mass and volume calculation 
using Equation (2). The acoustic impedance was found for both 
coupling gels, with and without 2.5% diclofenac gel.
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Z= ρ*c………………………………………………………….. (2)

Bovine diathermy: Bovine muscle tissue, 800 mg ± 200 mg, 
bought from a local butcher, was normalized to room temperature 
and pressure. The ultrasound coupling gel (3 ml) with and 
without 2.5% diclofenac was placed on the surface of the tissue 
and well-secured using bandages to ensure to stop any leakage of 
the gel. The SAM transducer was placed on top of the coupling 
cup and sealed airtight bandage (Figure 1C). Stainless steel 
thermocouple probes were stereotactically inserted 2.5 inches 
into the bovine muscle tissue directly under the center of the 
transducer. Three probes were stereotactically inserted at 1 cm, 2 
cm, and 5 cm depths (Figure 1D). The internal temperatures were 
continuously monitored during the treatment using OMEGA 
thermocouple probes (TJ36-ICSS-116G-6-GG) and recorded on 
a DAQPRO Data logger (OM-DAQPRO-5300). The data logger 
was set to continuously collect thermocouple K values every ten 
seconds until the logger was stopped. The tissue was stimulated 
for 4 hours by the SAM device (Figure 1C and 1D).

Clinical methods

Participants: Fifty-six individuals were recruited, and fifty-four 
healthy male and female subjects between the ages of years 18-
70 were enrolled for this study, with IRB being approved by the 
Yale New Haven Healthcare System of Eastern Connecticut. The 
study followed the deceleration of the Declaration of Helsinki 
and was registered on clinicaltrails.gov (NCT05259995). All 
subjects signed complete informed consent forms before the start 
of the study. Pregnant/nursing or subjects with a topical wound 
in the treatment area were excluded from the study. Subjects 
were given $100 completion per session. Twenty-six subjects were 
male, and twenty-eight females between 18-65, averaging 28 years 
old with 16.4 to 37.3 BMI with an average BMI of 25.8, were 
selected for the study.

Procedure

Participants were randomly assigned to one of four groups 
using random number allocation on Microsoft Excel. The study 

PRISMA flow diagram is shown in Figure 2. Group 1 subjects 
received SAM ultrasound treatment on the forearm with standard 
ultrasound coupling gel. Group 2 received the same treatment 
and standard gel on the calf muscle. Group 3 participants were 
treated with SAM+2.5% diclofenac ultrasound coupling gel on 
the forearm. Group 4 was treated with SAM+2.5% diclofenac 
ultrasound coupling gel on the calf muscle. Figures 3A and 
3B show the transducer positioning on the Calf and forearm, 
respectively (Figure 3A and 3B). All the stimulation sessions were 
comprehensively completed at the research study site with federal-
wide assurance. Local temperature readings were recorded for a 
4-hour SAM treatment protocol in healthy human volunteers 
measured with a micro thermocouple probe on the skin surface 
under the active transducer. The temperature change was recorded 
at the untreated site as a reference point. Standard aqueous 
ultrasound coupling gel was used with the transducers in 28 
subjects (n=28), and 26 volunteers received treatment using the 
2.5% diclofenac ultrasound coupling gel (n=26). Temperatures 
were recorded at the skin’s surface beneath the active transducer 
on either the forearm (n=27) or calf muscle (n=27). Control 
temperatures were recorded at the skin’s surface 6 cm away from 
the treatment site, as shown in Figures 4A and 4B. Temperatures 
were measured using an OMEGA micro thermocouple (Model: 
5SC-TT-K-40-36) and recorded with the OMEGA DAQPROS, 
also used in laboratory experiments. The thermocouples adhered 
to the skin with SAM bandage pieces. The data was uploaded to 
DAQLAB software on the computer to be analysed (Figures 4A 
and 4B).

Statistical analysis

A statistical analysis was conducted to assess the statistical 
differences in ultrasonic signal penetration, gel acoustic 
properties, and temperature performance for the two coupling 
gels used. T-tests were conducted using sample size, mean with 
standard deviation and statistical differences of more the p<0.05 
were considered significant differences between measurement 
groups. In addition, the statistical difference between different 
temperature depths at the same site was evaluated using One-Way 
ANOVA with Prism GraphPad.

Figure 1A and 1B: 	Experimental set-up: For intensity measurement without bovine muscle tissue (1A) and with bovine muscle tissue (1B).  
Note: From (1A) and (1B), (a)-hydrophone connected to an oscilloscope for readings; (b)-standard ultrasound coupling gel; (c)-LICUS transducer 
powered by function generator; (d)-bovine muscle tissue cut to be 1 cm thick. 
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Figure 1C and 1D: From (1C) and (1D): (a)-Bovine muscle tissue; (b)-SAM bandage containing ultrasound coupling gel; (c)-SAM transducer to 
deliver LICUS; (d)-OMEGA Thermocouple Probe; (e) Thermocouple probe inserted at 1 cm depth; (f)-Thermocouple probe inserted at 2 cm 
depth; (g)-Thermocouple probe inserted at 5 CM depth.

Figure 2: PRISMA flow diagram for screening, enrollment, group assignment, and completion (100%) for participants in a clinical study.
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Figure 3: Human subject experimental set-up (A) On the calf and (B) the forearm. Note: a) Untreated skin surface micro thermocouple probe 
adhered in place with a bandage b) treated skin surface micro thermocouple probe placed directly underneath the active transducer and held in 
place with the SAM bandage (ultrasound patch).

Figure 4A: Intensity of SAM Ultrasound at increasing depths in bovine muscle tissue compared to the intensity threshold for therapeutic 
benefits of commercially available ultrasound treatment.  Note: (——) :SAM with Standard Gel; (——) : SAM with 2.5% Disclofenac Gel; (––) 
:Therapeutic Ultrasound Treatment Threshold.

Figure 4B: The temperature during SAM stimulation on bovine muscle tissue at various depths 1cm, 2cm, and 5cm using two different coupling 
patches (with and without 2.5% diclofenac). *(p>0.05) and Note: **(p<0.05). Average temperature values for human subject clinical study. Note: 
(–––) 1 CM 2.5% Disclofenac Gel; (––) 2 CM 2.5% Disclofenac Gel; (—) 5 CM 2.5% Disclofenac Gel; (–––) 1 CM Standard Gel; (––) 2 CM  
Standard Gel; (—) 5 CM Standard Gel.
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RESULTS 

Laboratory results

2.5% Diclofenac gel properties: The speed of sound calculated 
for 2.5% diclofenac ultrasound gel was 1513.24 ± 2.24 m/s. The 
speed of sound calculated for the current SAM ultrasound gel 
was 1512.64 ± 2.39 m/s with no significant difference (p=0.69). 
Acoustic impedance was calculated using the speed of sound and 
the density of both gels, respectively. Acoustic impedance for 
2.5% diclofenac ultrasound gel was 1.599 ± 0.0001 MPa⸱s/m3 
and 1.543 ± 0.002 MPa⸱s/m3 for the SAM ultrasound gel. The 
acoustic impedance between both coupling gels was statistically 
different (p<0.0001) (Table 1). 
Table 1: Calculated values for Speed of Sound and Acoustic Impedance 
using equations (1) and (2), given density, and data values collected 
during intensity measurements (n=5).

 
Standard 

ultrasound gel
2.5% Diclofenac 

gel
p-value (n=5)

Density (g/mL) 1.02 1.06 0.0001

Speed of Sound 
(m/s)

1512.64 ± 2.39 1513.24 ± 2.24 0.6944

Acoustic Impedance 
(Mpa.s/m3)

1.54 ± 0.002 1.60 ± 0.002 0.0001

 
Bovine performance testing

The SAM device did not fall below the therapeutic ultrasound 
threshold of bone-growth stimulators (30 mW/cm2) until 
approximately 4.5 cm in bovine tissue depth and 5.5 cm depth 
with 2.5% diclofenac ultrasound gel coupling. The calculated 
Intensity values confirm that the 30 mW/cm2 threshold passed 
between 4.5 cm and 5.5 cm, and the addition of 2.5% diclofenac 
significantly (p=0.009) enhances ultrasound propagation into 
tissue by approximately 1 cm. The highest acoustic intensity was 
recorded at the surface of the transducer, and it decayed across 
the depth. The exponential decay rate was delayed with 2.5% 
diclofenac, showing improved acoustic impedance matching with 
the 2.5% diclofenac sodium gel (Table 2).
Table 2: Ultrasound intensity at different depths stimulated with 
standard and 2.5% diclofenac ultrasound patches.

Depth (cm)
Intensity with standard gel 

(mW/cm2)
Intensity with 2.5% 

diclofenac gel (mW/cm2)

0 264.00 ± 1.12 264.00 ± 1.34

1 155.33 ± 5.37 166.04 ± 3.47

2 103.75 ± 7.92 106.50 ± 6.94

3 59.12 ± 6.33 70.32 ± 5.83

4 41.85 ± 4.51 48.33 ± 4.76

5 23.93 ± 1.87 34.97 ± 2.22

6 11.97 ± 1.32 26.84 ± 1.15

The diathermic analysis at 1 cm, 2 cm, and 5 cm in the bovine 
tissue showed a distinct diathermic profile at each intramuscular 
depth and distance from the transducer surface. The highest 
temperature increase and change rate was recorded close 
to the transducer surface, 1 cm intramuscular depth. The 
temperature increased from an average of 20.63°C and peaked 
at approximately 35.31°C after 240 min of the treatment at 1 cm 
depth, Δ14.68°C was the highest change in tissue temperature for 
the first 90 min. The smallest temperature increase was recorded 
at 5 cm intramuscular depth from 20.36°C to 24.56°C with a 
total increase of Δ4.20°C and gradually increasing over 240 mins. 
The temperature significantly increased over 240 min (4 hours 
stimulation). After the treatment, the temperature decrease time 
was less. At the end of the SAM treatment, temperature reduced 
significantly over the first 60 mins, with a relatively higher rate 
of decrease recorded in the bovine tissue treated with 2.5% 
diclofenac gel due to the deeper therapeutic acoustic penetration. 
However, no distinctive diathermic profile differences were 
recorded between the SAM coupling patches without and with 
2.5% diclofenac. 	

Clinical human subject’s results

The effect of the diclofenac coupling patch on skin temperature 
was assessed in the adult human calf and forearm. Prior to the 
start of the treatment, skin temperature was 28.78°C ± 1.39°C 
and 29.29°C ± 1.39°C respectively, without and with 2.5% 
diclofenac coupling gel at the Calf and 29.96°C ± 1.69°C and 
30.32°C ± 1.64°C respectively without and with 2.5% diclofenac 
coupling gel on the human forearm. After the 4 hours of the SAM 
treatment, approximately the same increase in the temperature was 
recorded at both sites (Figures 4C and 4D). The skin temperature 
at the calf increased to 40.56°C ± 1.33°C and 41.46°C ± 1.73°C 
respectively, without and with 2.5% diclofenac coupling gel. On 
the forearm, skin temperature increased to 40.04°C ± 2.17°C and 
40.22°C ± 1.95°C respectively, without and with 2.5% diclofenac 
coupling gel. The presence of diclofenac did not affect the surface 
temperature change after the 4-hour treatment. No significant 
effect was recorded at either site before or after treatment due to 
the presence of 2.5% diclofenac sodium. 

Figure 4C: Average temperature values on the calf. Note: ()
Ultrasound Gel; () 2.5% Disclofenac Ultrasound Gel
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WOMAC score in knee osteoarthritis patients after being treated 
with SAM with 1% diclofenac hydrogel for 7 days [24]. Jarit, et al. 
has shown significant injury pain relief in tendon, muscle, and 
bone injuries with SAM with 2.5% diclofenac gel for 4 weeks [25]. 
Multiple studies have shown synergistic responses of ultrasound 
and diclofenac application [19,21,24,32]. This study for time 
shows that the addition of diclofenac can potentially enhance the 
ultrasound acoustic penetration into the biological tissue. The 
long-duration SAM treatment renders it essential to ensure that 
additional 2.5% diclofenac sodium would not negatively impact 
the diathermic properties of SAM treatment and potentially 
cause undesired adverse effects. The data from this study show 
that the addition of 2.5% diclofenac to the gel changes the 
density of the coupling patch and improves ultrasound coupling 
into deeper tissue. The diclofenac gel coupling provides similar 
diathermic heating properties through the 5 cm of the bovine 
tissue while providing slower cooling and deeper ultrasonic signal 
propagation. The slower cooling directly results from an overall 
increase in ultrasound transmission into the bovine muscle tissue 
(more energy delivered) due to the improved acoustic impedance 
characteristics of the 2.5% diclofenac ultrasound gel. 

CONCLUSION

This can also be visualized with generally higher diathermy 
measurements at 2 cm and 5 cm across all time points measured, 
including the cool-down phase. This study, for the first time, 
shows adding 2.5% diclofenac sodium improves ultrasound 
coupling into deep soft tissue and can be potentially used for 
long-duration SAM treatment in therapeutic applications. The 
study has some limitations as it uses bovine tissue for deep tissue 
measurements; future studies may use ex vivo human tissue 
specimens or large porcine animal models to further assess the 
efficacy of the long-term SAM treatment with 2.5% diclofenac. 
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