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Abstract

Background and objective: Acrolein is a highly reactive α, β-unsaturated aldehyde and a respiratory irritant that
is ubiquitously present in the environment but that can also be generated endogenously at sites of inflammation.
Apical junctional protein claudin 5 can be affected by acrolein. This study aimed to determine the impact of aberrant
expression of DNMT1, DNMT3b, MBD3, and MeCP2 on acrolein induced claudin 5.

Methods: EA.hy926 cell lines were exposed to acrolein 30 nm for 1 h, 2 h, and 4 h. Epigenetic enzyme such as
DNMT1, DNMT3b, MBD3 and MeCP2 were quantified in the cell line using real time PCR. Claudin 5 methylation
was checked by methtyl specific PCR.

Results: After acrolein 30 nm exposure, MBD3 and MeCP2 transcript were decreased at 1 h and increased at 2
h and 4 h compared to control. DNMT3b transcript was decreased at 1 h, 2 h, and 4 h following acrolein 30 nm
exposure. DNMT1 transcript was not different between control and acrolein 30 nm exposure. Claudin 5 methylation
transcript /total Claudin 5 transcript was decreased at 1 h, 2 h and 4 h following acrolein 30 nm exposure.

Conclusion: These findings demonstrate that acrolein exposure modify epigenetic enzyme leading to Claudin 5
methylation change, suggesting that acrolein contribute to enzyme pathway involved in epigenetic regulation.
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Introduction
Acrolein (2-propenal) is a highly reactive α, β-unsaturated aldehyde

and a respiratory irritant that is ubiquitously present in the
environment but that can also be generated endogenously at sites of
inflammation [1,2] . Acrolein is abundant in tobacco smoke, which is
the major environmental risk factor for asthma and chronic
obstructive pulmonary disease (COPD), and elevated levels of acrolein
are found in the lung fluids of asthma and COPD patients [1-3].
Because of its reactivity with respiratory-lining fluid or cellular
macromolecules, acrolein alters gene regulation, inflammation,
mucociliary transport, and alveolar–capillary barrier integrity [1].

An integral membrane protein, Claudin 5 (CLDN5), is a critical
component of endothelial tight junctions that control pericellular
permeability [2]. Acrolein can induce ALI with perivascular edema in
mice, accompanying by a compensatory increase in CLDN5 transcript
and protein, which was more evident in a resistant than a sensitive
mouse strain [2].

Epigenetics is the study of stable modifications of fixed genomes
that direct which genes are expressed and silenced [4,5]. Although
heritable from parent to child, and potentially stable between cell
cycles, epigenetic regulation of DNA transcription can also be
modified by a number of external factors to allow flexible responses to

a changing environment such as air pollution, tobacco smoke, and
other sources of oxidant stress, along with the microbial environment,
pesticides, and toxins [4]. A number of different disease processes
among them cancer, atherosclerosis, mental retardation syndromes,
autoimmune, and allergic processes are in part controlled by epigenetic
processes [4,6]. DNA methylation is accomplished by several subtypes
of the DNA methyl transferases (DNMT). DNMT1 is considered the
maintenance methyltransferase because this isoform acts to maintain
methylation states during mitosis and in the daughter cells. DNMT3A
and DNMT3B initiate de-novo methylation [7], although the triggers
for this activity are only partly identified. Age, sex, genetic
polymorphisms, and environmental exposures are some factors
associated with altered methylation [8]. Histones can be modified by a
number of processes including by acetylation, phosphorylation,
methylation, ubiquitination or sumoylation [5]. This study aimed at
examining the effect of epigenetic enzyme on claudin 5 expresion
exposed to acrolein.

Materials and Methods

Cell culture and acrolein treatment
(No. CRL 2922; ATCC, Manassas, VA), Confluent cells were washed

in D-PBS, incubated for 30 min, and then exposed to 30 nm acrolein
(<4 h) in D-PBS.
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Total RNA extraction and real-time PCR to measure
methylation enzymes expression levels

Total RNA was extracted using a TRI REAGENT (Molecular
Research Center, Cincinnati, OH, USA) according to the
manufacturer’s instructions. We quantified RNA and reverse
transcribed cDNA from 3 μg of total RNA. RNA was reverse-
transcribed by incubation with 0.5 mM dNTP, 2.5 mM MgCl2, 5 mM
DTT, 1 ul of Oligo DT(0.5 ug/ul) and SuperScript II RT (200 unit/ul) at
42°C for 50 min, and heat inactivated at 70°C for 15 min. About 50 ng
cDNA was amplified using Applied Biosystems Step One TM Real-
Time PCR System. The PCR mixture (20 μl) contained 1ul of cDNA, 1
μl of 10 pmol forward and reverse primers and 10 μl of 2X SYBR Green
Supermix (Applied Biosystems). The reaction was carried out in a two-
step procedure: denaturation at 95°C for 10 min and 40 cycles with
denaturation at 95°C for 15 s, 60°C for 1 min and melt curve stage was
performed at 95 for 15 s, 60 for 1 min and 90°C for 15 s. The
comparative cycle number threshold (CT) method (∆∆CT) was used
to quantify the transcript expression levels. The change in CT value
(∆CT=CT gene of interest -CTPGK1) was calculated for each sample.
The comparative ∆∆CT calculation involved finding the difference
between each sample's ∆CT and the mean ∆CT for the control
samples. These values were transformed to absolute values using the
formula: comparative expression level (fold change)=2-∆∆CT. The
conditions and primers designed for detected genes were listed in
Table 1.

Gene Sequences (5’-3’) Annealing
temperature
(°C)

PCR
products
size (bp)

PGK1 F GACCTAATGTCCAAAGCTGAGA 58 127

R A

CAGCAGGTATGCCAGAAGCC

DNMT1 F AACCTTCACCTAGCCCCAG 58 125

 R CTCATCCGATTTGGCTCTTTCA

DN
MT3b

F CCAATCCTGGAGGCTATCCG 60 152

 R ACTGGGGTGTCAGAGCCAT

MeCP2 F TGACCGGGGACCCATGTAT 58 145

 R CTCCACTTTAGAGCGAAAGGC

MBD3 F CAGCCGTGACCAAGATTACC 59 135

 R CTCCTCAGCAATGTCGAAGG

Table 1: Primer sets for real time PCR.

Claudin-5 CpG methylation in vitro by methylation-specific
PCR (MSP) and real-time MSP

Total genomic DNA from the EA.hy 926 cells was extracted using a
mini DNeasy Kit (Qiagen, Tokyo, Japan). Bisulfite conversion of
genomic DNA was performed using a Zymo EZ DNA Methylation
Gold kit (Zymo Research Corp, Orange, CA). MSP was performed to
determine the methylation status of the CLDN5 gene. Specific
methylated or unmethylated sequences of the primers: Human
Claudin-5-M methylated primers forward:

GTAAGGTGTTTTTGGAATGATTTC reverse:
ATCCAACCACCAATCTTAATACG Human Claudin-5-U
unmethylated primers forward:
GTAAGGTGTTTTTGGAAATGATTTT revers:
ATCCAACCACCAATCTTAATACAAC. These primers designed
using the Methprimer tool.

Methyl amplification used hot start premix (bionner, Daejeon,
Republic of Korea) and conditions were as follows: initial denaturation
at 95°C for 10 min, denaturation at 94°C for 30 s, annealing at 58°C for
30s, and extension at 72°C for 30 s for 35 cycles, followed by a
stabilization for 7 min at 72°C. Unmethyl amplification followed the
same procedure. Amplification products were separated by gel
electrophoresis and stained with ethidium bromide. The density
(intensity 3 square millimeters) of each band specific for methyl and
unmethyl primers was measured under UV light and promoter
methylation status was expressed by percent density of methyl band /
[methyl band+unmethyl band].

Statistical analysis
All data were analyzed using the SPSS version 7.5 for Windows.

Data are expressed as mean ± SEM. Inter-group comparisons were
assessed by non-parametric method using Mann-Whitney U test. A p-
value of less than 5% was regarded as statistically significant.

Results

DNMT3b transcript decrease after exposure to acrolein
EA.hy926 cell lines were exposed to acrolein 30 nm for 1 h, 2 h, and

4 h. Epigenetic enzyme such as DNMT1, DNMT3b, MeCP2 and
MBD3 were quantified in the cell line using real time PCR. DNMT3b
transcript was decreased at 1 h, 2 h, and 4 h following acrolein 30 nm
exposure (Figure 1A). DNMT1 transcript was not different between
control and acrolein 30 nm exposure (Figure 1B).

Figure 1: Changes of DNMT3b (A) and DNMT1 (B) following
acrolein 30 nm exposure by time. Data showed mean ± SE.
**p<0.05 compared to control.

Changes of MeCP2 and MBD3 transcript exposed to acrolein
After acrolein 30 nm exposure, MeCP2 (Figure 2A) and MBD3

(Figure 2B) transcript were decreased at 1 h and increased at 2 h and 4
h compared to control.
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Figure 2: Changes of MeCP2 (A) and MBD3 (B) following acrolein
30 nm exposure by time. Data shows mean ± SE. **p<0.05
compared to control.

Claudin 5 methylation transcript decrease after exposure to
acrolein

Claudin 5 methylation was checked by methtyl specific PCR.
Claudin 5 methylation transcript/total Claudin 5 transcript was
decreased at 1 h, 2 h, and 4 h following acrolein 30 nm exposure
(Figure 3).

Figure 3: Changes of methylation/unmethlation and methylation
ratio of claudin-5 following acrolein 30 nm exposure by time. Data
showed mean ± SE. **p<0.05 compared to control.

Discussion
This study adds to novel information that acrolein exposure modify

differently epigenetic enzyme by time windows. Acrolein (an α, β-
unsaturated 2-alkenal) is highly reactive in biological systems and can
be extremely irritating [9-11]. Acrolein levels are elevated in second-
hand smoke compared with mainstream smoke because side-stream
smoke is generated at lower combustion temperatures [12-14].

Epigenetics refer to inheritable changes beyond DNA sequence that
control cell identity and morphology and play key roles in
development and cell fate commitments and highly impact the etiology
of many human diseases such as respiratory diseases [4]. DNA

methylation, histone modification, and miRNAs represent coordinated
processes that regulate gene silencing or expression by architectural
remodeling of the genome [4].

Epigenetic changes are modulated by environmental exposures such
as air pollutants, making epigenetics the interface between genes and
environment [4]. With more knowledge about acrolein effect on
human effects, it may be the window through which we can control
exposures to protect patients from environmental exposure. In our
study claudin 5 methylation ratio (methylation/unmethylation plus
methylation) was decreased at 1 h, 2 h, and 4 h following acrolein 30
nm exposure indicating that methylation of claudin-5 gene decrease
gene expression.

DNA methylation has been shown to be a key contributor to
epigenetic regulation of gene expression. Its mechanism of action can
be mediated through direct inhibition of transcription factors or DNA
interactions modulated by methylation of specific regions of promoters
[15-19], recognition of methylated DNA sequences by transcriptional
repressors associated with the recruitment of corepressors [20,21], or
binding of methylated DNA binding proteins (MBPs) to nucleosomes
leading to chromatin compaction, as shown with methyl-CpG-binding
protein 2 (MeCP2) [22].

Understanding how the methylome is affected by environmental
signals that do not affect methyl donor levels is more challenging.
Aging [23], smoking [24,25], and heavy metal exposure [26,27],
acrolein [28,29] have all been associated with changes in the DNA
methylome, and with changes in DNMT expression, but the
mechanisms by which these changes occur are largely unknown. DNA
methyltransferases (DNMTs) such as DNMT1, DNMT3A and
DNMT3B contribute to various physiologic and pathologic conditions
including embryo implantation [30], cytomegalovirus infection [31],
radiation [32], cancer, aging, neural cell differentiation [33]. In this
study although DNMT3b was increased at 1 h, 2 h, and 4 h, and
DNMT1 was not changed compared to control in acrolein 30 nm
exposure. Those results suggest that acrolein exposure affect DNMTs
enzymes according to acrolein concentration.

MeCP2 (Methyl-CpG-binding protein 2) was the first MBP
discovered to selectively recognize and bind methylated DNA
sequences [34]. Since the discovery of MeCP2, 4 additional members
of the MBP family (MBD1, MBD2, MBD3, and MBD4) have been
identified through bioinformatic analysis of the polypeptide sequence
of the methylated DNA binding domain (MBD) shared by these
proteins [35].

MeCP2 was also the first MBP found to interact with HDAC-
containing complexes, linking two epigenetic repression mechanisms:
DNA methylation and histone deacetylation [36]. After acrolein 30 nm
exposure, MBD3 and MeCP2 were decreased compared to control at 1
h and increased at 2 h and 4 h, indicating that MBD and MeCP2
differently function by time and dose following acrolein exposure.

In conclusion our study demonstrate that acrolein exposure modify
MBD 3 and DNMTs and MeCP2 related to epigenetics, suggesting that
acrolein contribute to enzyme pathway involved in epigenetic
regulation. Further studies will be needed to explain the role of specific
gene related to acrolein exposure.
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