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Introduction
Tumor anatomy can be described using a three compartment model 

including the tumor vasculature, the interstitial space and the actual 
neoplastic cells [1]. For any systemically administered anti-neoplastic 
chemotherapeutic to have clinical efficacy it must first circulate 
through the systemic vasculature, exit from the intratumoral vascular 
space, traverse the interstitium and enter or effect the neoplastic cell 
in large enough quantities to have efficacy. At each of these steps there 
are barriers, related to tumor anatomy and physiology, which hinder 
delivery of the drug throughout the entire tumor [2-4]. Poor efficacy 
of promising therapeutics may be attributable to these barriers. A 
multitude of promising strategies have been described to circumvent 
these barriers including targeted therapeutics and intratumoral delivery. 
These exploratory approaches, in various stages of development, may 
likely supplant current systemic chemotherapeutic administration. 
While theoretically efficacious, no approach is broadly validated or 
accepted at this early stage of a probable paradigm shift.

Barriers to the Delivery of Anti-Neoplastic Therapeutics
Vasculature

First pass clearance, by the reticuloendothelial system, spleen 
and liver, is the initial barrier to intratumoral accumulation of a 
systemically delivered agent. Once at the tumor vasculature, movement 
of therapeutics through the vasculature is governed by vascular 
morphology (number, length, diameter, arrangement) and physiology 
(perfusion, permeability). Tumor vessels are dilated, saccular, tortuous, 
and heterogeneous in their spatial distribution [5]. The imbalance 
of vascular development and tumor cell proliferation results in the 
formation of hypovascular regions in tumors. The micro vascular 
density is high at the invasive edge, but the tumor center can be 
unperfused, preventing delivery of therapeutics. Tumor blood flow 
is unevenly distributed, fluctuates with time and can even reverse its 
direction. Therefore, regions with little or no perfusion are commonly 
seen [2,3,5]. The average RBC velocity can be an order of magnitude 
lower than in normal vessels. The viscosity of blood, within the tumor 
vasculature, is elevated due to low flow, RBC rigidity and clumping, 
intravascular tumor cells, and low pressure in tumor venules [5]. 

Tumor vessel wall structure is also abnormal [6]. Large inter-
endothelial junctions, increased fenestrations, vesicles, vesico-vacuolar 
channels, and a lack of normal basement membrane are often found in 
tumor vessels [7-9] resulting in relative hyper permeability. However, 
there is known spatial and temporal heterogeneity in tumor vascular 
permeability [10]. The size of vascular pores determines the size of 
particles that may extravasate through them [7,10,11].

Polyethylene glycol coating improves stability and protects the 
therapeutic from proteolytic digestion by the reticular endothelial 
system, resulting in increased circulating time. The use of polyethylene 
glycolated liposomal doxorubicin has been successful in clinical 
settings [12]. Anti-angiogenic agents such as Bevacizumab and 
Sorafenib may normalize tumor vessels and decrease tumor IFP [13-

15] restoring pressure gradients and thus, increasing drug penetration
in tumors [14,16]. Several physical (e.g. radiation, heat) and chemical 
(e.g. vasoactive drugs) agents may lead to an increase in tumor blood 
flow [17,18]. A key problem with this approach is that it is short-
lived and applies to well vascularized regions. Regions of sub-lethal 
hyperthermia, following radiofrequency ablation, have increased 
vascular permeability shown to augment delivery of liposomal 
doxorubicin [19]. Vascular endothelial Growth Factor has been used to 
augment transvasular transport [11].

Interstitial space
The tumor interstitial space is large. High interstitial fluid pressure 

(IFP) results from hyperpermeable vessels and the lack of functioning 
lymphatics in tumors [1,20,21]. Proliferating tumor cells, in a confined 
space, compresses intra-tumoral lymphatic vessels [21,22]. Elevated 
IFP reduces convective transport, while the dense extracellular matrix 
hinders diffusion [1,21,22]. Radially outward convection to the tumor 
periphery and peri-tumoral space opposes the inward diffusion 
reducing therapeutic delivery to the center of the tumor. Uniformly 
reduced trans-mural pressure gradients decrease convection across 
tumor vessel walls. Furthermore, fluid convection is negligible inside 
tumors due to the lack of interstitial pressure gradients. Thus, the 
uniformly elevated IFP compromises the delivery of therapeutic agents 
both across the blood vessel wall and interstitum in tumors [2,4,5]. 

Larger therapeutics such as antibodies or nanoparticles are suitable 
for passive targeting by the enhanced permeability and retention 
effect (EPR), extravasating through hyperpermeable vessels and not 
being cleared by lymphatics [23] but have poor diffusion resulting in 
accumulation around tumor blood vessels and little penetration into 
the tumor parenchyma [24]. The tumor interstitium can be modified. 
Matrix metalloproteinases (MMP) can degrade all components of the 
ECM. MMP-1 and -8 have been shown to improve convective transport 
in tumors and enhance the efficacy of oncolytic herpes simplex virus 
(HSV) therapy [25]. In addition, Hyperthermia has been shown to 
decrease IFP in a time dependent manner [26].

Neoplastic cells
Once at the tumor cell, therapeutic agents must cross the cellular 
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or nuclear membranes. Multidrug-resistant pumps may clear the 
therapeutic from the cell. Sublethal hyperthermia has been suggested 
to deactivate these pumps and destabilize membranes [19,27]. The 
tumor microenvironment is characterized by low pH and low pO2. 
Hypoxia is associated with resistance to some chemotherapeutics such 
as bleomycin and neocarzinostatin [28]. Likewise acidic extracellular 
pH hinders the cellular uptake of weak base drugs such as adriamycin, 
doxorubicin and mitoxantrone [29]. Moreover, exposure of the cancer 
cells to sublethal concentration of a therapeutic agent may facilitate the 
development of resistance. 

Targeted therapeutics and intratumoral delivery
More than 100 years Ehrlich recognized that targeted or localized 

drug delivery should be a major goal of chemotherapy [30]. Recent 
strategies to overcome these barriers include the development of active 
targeting of anti-neoplastic agents, to tumor vasculature or neoplastic 
cells, using ligands or antibodys and the imaging guided delivery of the 
therapeutics directly into the tumor or its arterial vasculature. These 
strategies are paramount to the development of multi-functional nano 
particles [31].

Recent common interest in molecular imaging and therapy 
among interventional radiologists has led to the establishment of 
“interventional molecular imaging”. Imaging guidance is used to reach 
deep-seated targets, precisely delivering nontargeted therapeutics thus 
enhancing the efficacy [32,33].

There is great potential for the use of imaging-based guidance to 
augment delivery by circumventing these barriers. Minimally invasive, 
imaging-guided percutaneous- intratumoral or catheter-directed intra-
arterial delivery of therapeutics is suggested to improve delivery and 
reduce toxicity.

Intratumoral percutaneous infusion and gel or wafer implantation 
has been used to deliver a number of therapeutics [34,35]. Percutaneous 
delivery of therapeutics may be performed with Ultrasound (US), CT-, 
or MR imaging–based guidance [36]. Imaging-guided percutaneous 
delivery of cisplatin, paclitaxel, and gadolinium, as a radiation sensitizer, 
has been investigated [37]. Greater homogeneity of intratumoral 
distribution of a therapeutic may be possible when not dependent on 
microvascular distribution, perfusion, and permeability. Catheter-
directed intra-arterial chemoembolization, bland embolization, and the 
use of drug-eluding beads are also well-established methods of localized 
intratumoral delivery [38]. The resurgent use of balloon catheters [39] 
and intra-arterial infusion [40] to deliver large boluses are examples of 
the progression of this strategy. A number of clinical studies have been 
performed investigating the use of intra arterial catheter-directed nano-
particle therapy such as with Abraxane (Celgene) nanotherapeutics 
for head and neck and anal tumors [41]. Less-invasive strategies of 
imaging-guided localized delivery are being developed. US-assisted 
delivery has been described for liposomal carriers, polymeric micelles, 
and nanobubbles. US energy may drive such agents against the vessel 
wall, through cell membranes, and into tumor cells [42]. Magnetic 
and radiofrequency-based targeting have also been used to improve 
intratumoral accumulation of circulating therapeutics [43].
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