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Abstract

Collecting repeat samples of blood ("liquid biopsies") is a broadly used clinical approach for serial monitoring of
disease or response to treatments. In patients with cancer the most distinct molecular feature are somatic mutations
acquired by cancer cells present in the diseased tissue. Indeed, mutant DNA derived from dying or lysed cancer
cells can be isolated from patient serum samples, subjected to DNA sequencing and to analysis of abundance as a
measure of tumor burden. Also, changes in the DNA mutation patterns in serum samples collected over time can
indicate altered pathways or clonal evolution of the disease and altered abundance of mutant DNA suggests an
altered disease burden. In addition, during the course of treatment, changes in circulating DNA mutation patterns
can indicate the emergence of resistant clones and prompt changes in treatment. In contrast to mutant DNA,
microRNAs (miR) are transcribed, processed, packaged and released from cells in normal and in diseased tissues
as part of the extracellular crosstalk between cells. Interestingly, released miR can function in cell-to-cell
communication and as hormone-like signals that operate at a distance through their release into the circulation and
subsequent uptake into cells in distant tissues. Circulating miR expression patterns can be established from serial
serum samples and monitored for alterations over time. Circulating miR provide a readout of the organism's steady
state and serial analyses will indicate changes in the response to therapy or an altered physiologic or disease state.
Furthermore, changes in circulating miR patterns can indicate treatment efficacy or resistance as well as adverse
effects associated with the respective intervention. Thus, the combined serial analysis of mutant DNA and miR in the
circulation has the potential to provide a molecular footprint of pancreatic cancer and can be used to monitor
treatment responses or resistance to treatment in real time with a minimally invasive procedure.
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Introduction
Pancreatic cancer is a deadly malignant disease with surgical

resection currently the only potentially curative modality although
only 10-20% of patients are diagnosed with a resectable tumor [1,2].
Patients with advanced or metastatic disease receive chemotherapy
with either gemcitabine or S-1, an oral fluoropyrimidine, or with the
combination treatment FOLFIRINOX [3-5]. The prognosis of patients
receiving surgery and chemotherapy is dependent on a number of
characteristics including radiographical staging, histological grading,
ECOG scores and CA19-9 levels [6-8]. However, very little
improvement in the outcomes of patients with pancreatic cancer has
been seen in the past 30 years [1]. Here we will review the potential to
use blood samples or "liquid biopsies", a recent term coined to indicate
the relation to cancer tissue analysis, as markers of genetic
characterization of a cancerous lesion. It is conceivable that blood

samples can reflect the mutation profile of a primary cancer as well as
residual cancer cells that are not accessible physically or below
detection. Additionally, liquid biopsies can be taking repeatedly to
follow evolution of the disease. Identification of specific pancreatic
cancer markers is crucial for the improvement of controlling this
disease and recent studies have shown that circulating mutant DNA
can be found in the majority of cancer patients and can provide a
measurement of tumor burden. Moreover, it could be used to identify
specific mutant genotypes emerging from a heterogeneous tumor
population. In contrast to the unique source of mutant DNA, i.e.
cancer cells, miR isolated from the circulation is derived from virtually
all tissues in the organism (Figure 1.) The analysis of expression
patterns of circulating miR will thus provide a footprint of the steady
state of the organism that encompasses normal as well as pathologic
processes. Also, it will reflect the impact of therapeutic interventions
on the diseased as well as healthy tissues. Here we review the published
data on circulating nucleic acids, i.e. DNA and miR that reflect the
disease state and treatment responses of patients with pancreatic
cancer.
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Figure 1: Release of cell free DNA and miR into the circulation. Healthy organs e.g. brain, lung, heart, kidney, liver, bone marrow shed miR
and wild type DNA into the bloodstream as indicated by the dotted arrows. The pancreatic cancer (enlarged area) is depicted as cancer cells
(colored) and stromal cells (grey). Tumor-derived mutated DNA originates from the heterogeneous cancer cell population and is shed into
the circulation as cell-free (cf) DNA or from apoptotic cancer cells that entered the circulation. MicroRNAs derived from normal and from
tumor tissues reflect the composite of signaling in cancer cells, stroma and normal tissues. Double helices indicate cfDNA, short, single-
stranded nucleic acids in different colors indicate miR.

Circulating cell-free DNA (cfDNA)
The occurrence of cell-free, circulating DNA (cfDNA) in the blood

of patients was first described several decades ago [9-12]. Whilst the
concentration of cfDNA in the bloodstream of healthy individuals is
very low, cfDNA abundance increases significantly due to pathological
processes, as reviewed by Anker et al. [13]. Elevated levels of cfDNA
are detected in patients after surgery and trauma [14], myocardial
infarction [15-17], rheumatoid arthritis [9], pancreatitis [18] and
intensive care related conditions [19,20]. Additionally, athletes have
increased levels of cfDNA after heavy exercise [21] and pregnant
women carry fetal DNA in their bloodstream that has been used in
prenatal diagnostics to detect fetal abnormalities [22-24].

Despite the multitude of studies describing cfDNA, the origin and
nature of the double-stranded nucleic acid fragments isolated from the
circulation remain ambiguous [25,26]. It is commonly accepted that
apoptotic cells release DNA into the bloodstream. During apoptosis
DNA is cleaved and packaged into nucleosomes of roughly 180 base
pairs [27,28] and analysis of the size of circulating DNA indicates that
at least some is from debris after the apoptotic process [29-32].
Additionally, there is some evidence of lymphocytes and cancer cells
shedding DNA by unknown mechanisms [25,32-35]. Even though the
complex origin of cfDNA needs to be further elucidated, elevated
levels of cfDNA have been shown in independent studies of cancer
patients when compared to healthy individuals. This elevated cfDNA
is indeed mostly derived from cancer cells [10,11,30,36-39].
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Number of patients with
pancreatic cancer patients with
circulating mutant KRAS DNA

Detection method Pancreatic cancer stage Number of patients without
pancreatic cancer with
circulating mutant KRAS DNA
remarks

Remarks Reference

17 / 21 (81%) PCR-RFLP
followed by
sequencing

unresectable

disease

0 / 5 healthy

0 / 3 CP

2 patients had
circulating

mutant KRAS
without

detected mutant
KRAS in the

cancer tissue

Mulcahy et al. 1998

[109]

29 / 41 (71%) PCR-RFLP

followed by gel

electrophoresis

stages I-IV 0 / 21 healthy

0 / 4 CP

0 / 3 cyst adenoma

no relationship with
tumor

stage

Dainxu et al. 2002

[110]

9 / 15 (60%) MASA-PCR

followed by gel

electrophoresis

stages I-IV 0 / 5 healthy

0 / 4 CP

related to tumor
size /

persistant
circulating mutant

KRAS DNA 3 out of
15

patients after
surgery and/or

chemoradiation

Yamada et al. 1998

[58]

22 / 47 (47%) allele-specific PCR

followed by gel

electrophoresis

stages I-IV 4 / 31 CP patients with CP did
not get

pancreatic cancer
in 36

months follow up
time /

no association with
tumor

stage or survival

Maire et al. 2002

[56]

20 / 56 (36%) RT-PCR using

PNA clamping

operable +

unoperable

disease

0 / 13 CP no association with
tumor

resectability or
survival

Dabritz et al. 2009

[111]

9 / 26 (35%) mismatch ligation

assay

stages I-IV - persistant
circulating mutant

KRAS DNA after
surgery in

4 out of 9 patients /

no association with
tumor

stage, grade or
metastasis

Uemura et al. 2004

[112]

30 / 91 (33%) PCR followed by

sequencing

unresectable

disease

- related to stage,
metastasis

and survival

Chen et al. 2010

[59]

12 / 44 (27%) PCR-RFLP

followed by gel

electrophoresis

stages I-IV 0 / 4 healthy

2 / 37 CP

no association with
tumor

size, however

related to stage,
metastasis

and survival

Castells et al. 1999

[57]
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(RT) PCR = (real time) polymerase chain reaction

CP = chronic pancreatitis

RPFL = restriction fragment length polymorphism

MASA = microsatellite associated sequence amplification

PNA = peptide nucleic acid

Table 1: Summary of published reports on circulating mutant KRAS DNA in patients with pancreatic cancer.

Factors impacting circulating mutant DNA levels
It is widely accepted that circulating mutant DNA originates from

cancer cells. However as studies accumulate, it becomes clear that a
multitude of aspects contribute to the varying levels of mutant DNA.
Firstly, biological processes influence the overall quantity of
circulating DNA. Circulating mutant KRAS DNA can be excreted by
the kidneys and can be detected in the urine [40]. Plasma nucleases
[41] and DNase1 [42] can contribute to the degradation of circulating
DNA. Furthermore, DNA can be bound to proteins [43,44] and
leukocyte activity influences the levels of cfDNA [42]. Intra-tumor
heterogeneity and the amount of wild type tumor stroma DNA will
have a great impact on the relative amount of mutant cfDNA [45].
Furthermore, age impacts the amount of cfDNA: Individuals of >90
years of age have elevated levels of cfDNA. Also, fragmented patterns
and appearance of low molecular weight cfDNA was observed in the
majority of the nonagenarians [46].

Secondly, technical aspects must be taken into account when
assessing the quantity and quality of cfDNA. Levels of cfDNA are
higher in plasma samples compared to serum samples because EDTA
indirectly inhibits blood DNases [47]. Blood sample storage before
spinning affects both the amounts and integrity of cfDNA [48] due to
ongoing lysis of leukocytes before they are separated from the plasma
by centrifugation. Furthermore, the wide variety in mutation detection
techniques will impact sensitivity and specificity [38,49,50]. More
recent studies report the use of targeted amplicon sequencing or
massive parallel sequencing to cover a range of genes with great depth
[51,52]. By using these recent approaches, the genomic heterogeneity
as well as tumor burden can be revealed in more detail and with
greater reliability than was possible even a few years ago.

Circulating cell-free mutant KRAS DNA in pancreatic
cancer

Genomic mutations in the Kirsten Rat Sarcoma Viral Oncogene
Homolog (KRAS) gene are found in 80 to 90% of all pancreatic
adenocarcinomas [53-55]. As a consequence, cfDNA from cancer
patients should harbor these mutations and will be indicative of
tumor-derived DNA. Data from numerous studies show the presence
of mutant KRAS DNA in the circulation of patients with pancreatic
cancer and are summarized in (Table 1). These results from a number
of research groups show that the detection of circulating mutant KRAS
DNA can be used to monitor pancreatic cancer progression. The
diversity in PCR and sequencing techniques used across the studies,
however, contributes to a varying detection rate of circulating mutant
KRAS DNA. Also, the various technical aspects regarding cell free
DNA isolation influence the quality of the mutant DNA
measurements as discussed above. With respect to the specificity of
mutant KRAS cfDNA for the detection of pancreatic cancer, the

findings are mixed. Four studies did not detect circulating mutant
KRAS DNA in patients with benign pancreatic pathology.

However, two studies described mutant KRAS in the circulation of
13% and 5% of patients (4 of 31 [56]; 2 of 37 [57]) with chronic
pancreatitis. These patients then underwent surgery to remove the
diseased organ. However, surgical pathology analysis of the tissues did
not detect pancreatic cancer and after a follow-up of 6 to 36 months,
none of the chronic pancreatitis patients with cfDNA KRAS mutations
had developed pancreatic cancer. The transiently detected mutant
KRAS DNA in the circulation likely originated from hyperplastic,
mucous cells of chronically inflamed pancreas that had been removed
and it thus appears that mutant KRAS cfDNA is not a reliable
indicator of the presence of pancreatic cancer.

Circulating tumor DNA to evaluate tumor burden and
therapeutic resistance

The majority of published studies on pancreatic cancer utilize
mutant KRAS cfDNA as a diagnostic marker to confirm the presence
of malignancy. When assessing alterations in circulating mutant KRAS
as a marker of altered tumor size, one group found no correlation [57],
whilst another group did find tumor size and abundance of circulating
mutant KRAS cfDNA to be correlated [58]. Overall, the ratio of cancer
cell to desmoplastic wildtype stroma will likely impact the abundance
of circulating mutant KRAS and variability in the assessment of
tumor / stroma ratio could explain the inconsistent findings across
studies.

Furthermore, the abundance of mutant KRAS cfDNA could serve
as a prognostic marker. Studies by Castells et al. and Chen et al.
conclude that the abundance of circulating mutant KRAS DNA is
associated with disease stage, metastasis and survival [57,59]. Uemura
et al. found circulating mutant KRAS DNA in 5 out of 25 patients with
stage III pancreatic cancer, in contrast to 25 out of 37 patients with
stage IV disease [112]. Importantly, they showed that the survival of 30
patients with detectable KRAS mutations in circulating DNA is 6.3
months shorter than that of patients where only wildtype KRAS DNA
was detected (p<0.001). After surgical removal of the tumor, cfDNA
can serve as an indicator for the presence of residual cancer cells.
Uemura et al. [112] showed that 5 out of 9 surgeries resulted in the
disappearance of mutant KRAS cfDNA. Additionally, Yamada et al.
[58] found that surgery and/or chemoradiation treatment resulted in
the disappearance of mutant KRAS from plasma DNA in 12 out of 15
patients. A recent study by Newman et al. [38] in lung cancer patients
they used a more sensitive DNA detection method for mutant cfDNA
levels and found a correlation with tumor volumes during
chemotherapy and surgery and with CT and PET scan data. Thus,
technical aspects of sample handling, tumor size measurements and
DNA measurement may account for the inconsistencies seen in the
earlier pancreatic cancer studies.
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In contrast to blood samples, small tissue biopsies will provide
limited and possibly erroneous genetic characterization due to the
spatial and temporal intra-tumor heterogeneity [60]. The mutation
pattern in a tumor can be indeed derived from deep sequencing
analysis of cfDNA [51,52] and cfDNA can be used to reveal clonal
evolution due to drug treatments [51,61]. During the course of
treatment, the somatic alterations of resistant clones can be accurately
followed using cfDNA, which can be applied to tailor the therapy to a
specific patient. No such studies have been published in pancreatic
cancers. A study by Diaz et al. on mutant KRAS cfDNA in colon
cancer patients could serve as a paradigm [62]: They found that 9 of 24
patients whose colorectal tumors were initially KRAS wildtype,
developed detectable mutations in KRAS in their cfDNA after
treatment with an EGFR antibody. The appearance of these mutations
was very consistent, occurring between 5 and 6 months following
treatment. This suggests that the emergence of KRAS mutant clones
was due to the selection for resistance to EGFR blockade. These
findings suggest potential utility also for pancreatic cancer monitoring
via cfDNA analysis.

Circulating miRs
MiR are non-coding ribonucleic acids of ~22 nucleotides in length,

which regulate mRNA stability and translation of known protein
coding genes [63]. MiR genes are transcribed from individual genetic
loci [64] and show complementary binding to 3' or 5'-untranslated
regions (UTR) of the targeted mRNA or to the open reading frames.
Via this interaction miR can lead to mRNA degradation or inhibition
of protein translation [65,66]. Due to the relatively short seed sequence
a single miR may target hundreds of mRNAs. Thus miR are involved
in virtually all physiological and pathological processes and found
altered in every type of cancer studied to date [67].

Cells export miR -containing apoptotic bodies, shedding vesicles,
and exosomes into the bloodstream [68-71]. Microvesicles are
impermeable to RNases, which explains the remarkable stability of
extracellular miR. Additionally, a majority of extracellular miR in
plasma or serum are membrane vesicle-free, but associated with 1 of 4
proteins of the Argonaute (AGO) family [72]. The remarkable stability
of AGO2 protein explains the stability of associated miR even in
nuclease- and protease-rich environments [71]. Data from a number
of laboratories suggest that different RNA species can be specifically
packaged into microvesicles by active sorting mechanisms which have
not been fully elucidated [73]. Blood cells are major contributors to
extracellular miR content in the circulation [74]. Different organs
contribute to circulating miR because tissue-specific miR such as miR
-122 (liver), miR -133a (muscle), miR -208a (heart), and miR - 124
(brain) have been consistently detected in plasma samples [75-77].
Tumors release miR into the bloodstream and cancer tissue-specific
miR have been found in the circulation at different stages of the
disease (for a recent review of circulating miR in cancer see
Schwarzenbach et al. [78]).

Circulating miR entrapped within microvesicles can be transferred
to recipient cells as signaling molecules and alter gene expression in
target cells [73]. Once in the circulation, miR can function as
hormones and a given miR may function as an oncogene or a tumor-
suppressor gene depending on the cellular context and the targeted
organ [79]. The concentration of miR in the bloodstream reflects

alterations in the homeostasis of the entire organism and a panel of
miR can easily be quantitated by quantitative PCR [80]. Findings from
such studies have established the basis for circulating miR as disease
biomarkers.

Factors impacting circulating miR levels
Cell free circulating miR can be obtained by using plasma that is

collected in EDTA tubes or serum collected in the absence of anti-
coagulants. Both can produce satisfactory results [81]. However,
plasma collection using heparin as an anticoagulant interferes with the
quantitation of miR species using PCR-based approaches [82]. Even
though this inhibition can be alleviated by digesting heparin with lyase
heparinase I prior to reverse transcription, it leads to lower efficiency
and higher costs. Blood samples have to be centrifuged promptly to
separate the cell-free phase and prevent hemolysis. Excessive
concentrations of miR-16 and miR-451 can be indicative of hemolysis
[83]. Before extraction of circulating miR, cells must be removed by
centrifugation at about 1,200 x g. Furthermore, dead cells, apoptotic
bodies, large shed vesicles, and cell debris can be removed by high-
speed centrifugation 14,000 to 16,000 x g [84]. To monitor the
efficiency of miR isolation, synthetic miR controls (SYNTH) can be
used by spiking samples. When extracting miRs from blood samples,
endogenous inhibitors of polymerases must be removed as much as
possible: Trizol reagents are an example of reagents that will serve this
purpose [85]. Polymerase inhibitors may include IgGs, hemoglobin or
lactoferrin. Measuring miR levels by Taqman qPCR has become a
standard method. In the case of very low RNA yields, the use of
Locked Nucleic Acid-enhanced primers improves the sensitivity of the
qPCR [86]. Furthermore, mutated Taq polymerases are less sensitive
to blood-borne inhibitors. A Taq polymerase mixture of normal and
Hemo KlenTaq improves sensitivity up to 30-fold as reported by Kim
et al. [81]. To account for different extraction efficiency, different
approaches have been used to compare miR concentrations across
samples. If a large number of miR is detected in a single sample, the
mean (or median) abundance can be used for normalization. There are
many reports on using levels of endogenous miRs as internal reference
control [87-89]. However, caution has to be taken before using this
approach, since biological and technical processes can greatly
influence the abundance of the miRs.

Circulating miR in pancreatic cancer
A wealth of information indicating the potential use of circulating

miR for pancreatic cancer screening has emerged over the past years
(Table 2). In 2014, Ganepola et al. performed a non-biased screening
method to develop a panel of blood based diagnostic biomarkers
consisting of circulating miR for the detection of pancreatic cancer at
an early stage. They compared 8 early stage pancreatic cancer patients
to 11 healthy controls and performed a high throughput screening
using hybridization microarray analysis [90]. After validation studies,
3 miR, miR -22, miR -642b and miR-885-5p were confirmed to show
consistent expression between microarray and qPCR. These 3 miR
were then validated and evaluated as a diagnostic panel with a new
cohort of patients and controls and found to yield 91% sensitivity and
91% specificity. The CA19-9 marker showed 73% sensitivity and 100%
specificity.
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Pancreatic

cancer vs.

benign

pancreas

pathology

(n)

Circulating miRs Pancreatic

cancer vs.

healthy

pancreas

(n)

Circulating miRs Remarks Reference

- - 28 vs. 19 miR-21, miR-210, miR-155,

miR-196a (all ↑)

- Wang et al. 2009 [113]

- - 28 vs. 19 miR-200a, miR-200b

(both ↑)

benign pathology vs. healthy

miR-200a, miR-200b (both ↑)

Li et al. 2010 [17]

- - 50 vs. 10 miR-21, (↑)

miRlet-

7d, miR-146a

(both ↓)

prognostic, survival Ali et al. 2010 [101]

- - 22 vs. 25 miR-210 (↑) no correlation with CA19-9
levels

Ho et al. 2010. [see below in
references]

6 vs. 8 miR-100a,

miR-10 (both ↑)

- - miR-10 (↑)homology with

pancreatic cancer-bearing
mice /

miR-155 (↓) tumor specific

gemcitabine response in

pancreatic cancer-bearing mice

LaConti et al. 2011 [107]

- - 36 vs. 30 miR-18 (↑) miR-18 (↑) after surgery Morimura et al. 2011

[104]

140 vs. 111 miR-21, miR-155,

miR-16,

miR-181a,

miR-181b,

miR-196a (all ↑)

140 vs. 68 miR-21, miR-155, miR-16,

miR-181a, miR-181b,

miR-196a (all ↑)

benign pathology vs. healthy:

miR-155, miR-181a, miR-181b,

miR-196A (all ↑)

Liu et al. 2012 [93]

41 vs. 35 miR-24, miR-134,

miR-146a,

miR-378,

miR-484,

miR-628-3p,

miR-1290,

miR-1825 (all ↑)

41 vs. 19 miR-24, miR-134,

miR-146a,

miR-378, miR-484,

miR-628-3p, miR-1290,

miR-1825 (all ↑)

miR-1290 and miR-486-3p

prognostic

Li et al. 2013 [105]

109 vs. 38 miR-182 (↑) 109 vs. 50 miR-182 (↑) prognostic Chen et al. 2014 [115]

77 vs. 67 miR-10b,

miR-30c,

miR-106b,

miR-132,

miR-155,

miR-181a,

miR-181b,

miR-196a,

miR-212 (all ↑)

77 vs. 71 miR-10b, miR-30c,

miR-106b,

miR-132, miR-155,

miR-181a,

miR-181b, miR-196a,

miR-212 (all ↑)

benign pathology vs. healthy

miR-212, miR-155 (both ↑)

Cote et al. 2014 [92]
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- - 11 vs. 11 miR-642b, miR-885-5p,

miR-22 (all ↑)

- Ganepola et al. 2014

[90]

- - 49 vs. 27 miR-492, miR-663a

(both ↓)

- Lin et al. 2014 [116]

32 vs. 12 miR-483-3p (↑) 32 vs. 30 miR-21, miR-483-3p

(both ↑)

miR-21 prognostic Abue et al. 2015 [102]

198 vs. 21 miR-6826-5p,

miR-6757-5p,

miR-3131,

miR-1343-3p

(all ↑)

100 vs. 150 miR-6075, miR-4294,

miR-6880-5p,
miR-6799-5p,

miR-125a-3p,

miR-4530, miR-6836-3p,

miR-4634, miR-7114-5p,

miR-4476 (all ↓)

pancreato-biliary cancer taken

together

Kojima et al. 2015 [91]

Table 2: Summary of published reports on circulating miRs in patients with pancreatic cancer and benign pancreatic pathology.

In a large study by Kojima et al. 571 serum samples obtained from
healthy subjects, patients with pancreatic, biliary-tract, or other
digestive cancers and patients with non-malignant abnormalities in
the pancreas or biliary tract were analyzed. Expression levels of miRs
were obtained by a 3D-Gene microarray. They found that a
combination of 8 miRs (miR-125a-3p, miR-4294, miR-4476,
miR-4530, miR-6075, miR-6799-5p, miR-6836-3p and miR-6880-5p)
achieved the best discriminant performance. The sensitivity was
80.3%, specificity 97.6% and accuracy 91.6% in detecting
pancreatobiliary cancers contrasted with healthy controls, non-
malignant abnormalities or other types of cancers [91].

There are some reports that extend beyond cancer related miRs,
which show that similar miRs are indicators of benign pancreas
pathology. Chronic pancreatitis is a risk factor for pancreatic cancer
and shares clinical symptoms with pancreatic cancer. For example,
circulating miR-155, 181a, 181b, 196a, 200a, 200b, and 212 were
reported as significantly upregulated in patients with chronic
pancreatitis versus healthy controls [17,92-94]. Li et al. showed that
levels of serum miR-200a and miR-200b are similar in pancreatic
cancer and pancreatitis patients, although they are increased compared
to healthy controls [94]. Interestingly the miR-200 family can inhibit
epithelial to mesenchymal transition and may thus have a direct
signaling role [95]. In conclusion, circulating miRs can indicate the
presence of chronic inflammatory and potentially premalignant
processes in the pancreas.

Circulating miRs reflect disease state, outcome and
drug response

Pancreatic cancer is a systemic disease that encompasses altered
glucose metabolism [96,97], stroma remodeling [98], and bone
marrow derived cellular activity [99,100]. The involvement of
circulating miRs in such processes makes them excellent candidates to
reflect the systemic impact of the disease and may provide additional
molecular markers derived from other tissues impacted by the disease,
e.g. the bone marrow. Ali et al. found that a high level of plasma
miR-21 was correlated with worse survival, and the expression of let-7
was inversely correlated with survival [101]. In addition, Abue et al.
tested the levels of miR--‐483-3p and miR-21 in plasma of 32
pancreatic cancer patients, 12 patients with intraductal papillary

mucinous neoplasm (IPMN) and 30 healthy controls and reported that
plasma miR--‐21 levels were associated with advanced cancer stage,
lymph node and liver metastasis, and shorter survival [102].

Surgical removal of pancreatic cancer lowered circulating miR-221
in 8 patients [103] and miR-18a dropped significantly after surgical
removal of pancreatic cancer in 9 patients [104]. Strikingly, at the time
of tumor recurrence in one patient, the levels of circulating miR-18a
had increased again despite the lack of any elevation of the
conventional serum tumor marker CA-19-9. Additionally, circulating
miR-483-3p levels decreased after surgery in 2 pancreatic cancer
patients [102] and Li et al. [105] report that higher miR-1290 levels
predicted poorer outcome among patients undergoing
pancreaticoduodenectomy.

Drug therapy impacts many organ systems. MiR concentrations in
the circulation could serve as easily accessible markers of treatment
efficacy and even indicate pathways altered by a given treatment.
Wang et al. showed that drug induced liver injury can be indicated by
a dramatic increase in plasma miR-122 and decrease in miR-170. The
circulating miRs showed to be more sensitive markers than alanine
aminotransferase for liver injury [106]. We studied circulating miRs
before and after Gemcitabine treatment in healthy and pancreatic
cancer-bearing mice [107]. MiR-10, miR-21 and miR-155 serum levels
decreased significantly after Gemcitabine treatment in both healthy
mice and in KrasG12D driven pancreatic cancer mice. Interestingly,
serum miR-155 concentrations in mice with pancreatic cancer were
significantly lower than in control mice upon Gemcitabine treatment
suggesting miR-155 as a potential indicator of tumor specific effects of
the treatment.

In a report by Shivapurkar et al. we showed that circulating
miR-296 is lost during tumor progression and correlates with
metastatic disease in colorectal cancer [108]. Patients with metastatic
colon cancer were treated with a multi-targeted receptor tyrosine
kinase inhibitor, Sunitinib, and the anti-metabolite Capecitabine.
Circulating miRs were analyzed from 7 pre- and matching post-
treatment serum samples. 3 patients had decreased miR-296 at 4 weeks
post treatment. 4 patients had an increase in the level of miR-296
during that time period. Compared to patients with longer survival
and better clinical outcome, patients with shorter survival and poor
clinical outcome exhibited a decrease in the level of miR-296 at 4
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weeks compared to baseline. The loss of miR-296 may be one of the
mechanisms for primary resistance of colorectal cancer to
chemotherapy and this could be translated to studies in pancreatic
cancer patients using similar drug regimen.

Conclusions
"Liquid biopsies", a recently adopted term for blood based

molecular analyses in cancer patient diagnostics can provide
innovative monitoring of the evolution of the disease and the response
to treatment. Both circulating microRNA and cancer cell derived
mutant DNA have been tested as potential surrogates or complements
for direct tissue biopsies. A major strength of liquid biopsies is the
possibility to compare serial samples from the same patient and thus
generate a molecular readout of disease progression and therapy
response or resistance in real time. Also the blood draw is minimally
invasive and provides bio specimen of comparable composition from a
homogeneous compartment, i.e. the blood stream.

Mutant cfDNA and circulating miRs provide distinct and
complementary information: Alterations in cfDNA mutation patterns
originate from treatment resistant cancer cell subpopulations and their
emergence could prompt changes in treatment. On the other hand,
altered patterns of circulating miR expression indicate a change in the
steady state of the whole organism that carries the disease in response
to treatment as well as disease response or progression. Thus, we
propose to use a combination analysis of circulating mutant DNA and
microRNAs to monitor treatment responses in patients with
pancreatic cancer (Figure 1). However, sensitive detection methods
and extensive analyses are needed to uncover indicators of diseased
organs in a background of circulating nucleic acids from healthy
organs. Figure 1 illustrates this challenge and the opportunity to
provide deeper insights into the molecular alterations driving
pancreatic cancers.
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