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Adaptor proteins are non-catalytic polypeptides that contain one 
or more domains that are capable of binding to other proteins or 
nonprotein ligands [1]. These molecules are essential for intracellular 
signal transduction involved in the regulation of endocrine action, 
metabolic activity, neuronal function, and cell growth. Recently, 
there has been growing evidence that adaptor proteins play critical 
roles in behavioral control and metabolic regulation. Glutamate 
receptor interacting protein 1 (GRIP1) regulates social behavior and 
modulates the autistic phenotype [2]. Maiya et al. [3] reported that 
a Lin11, Isl-1 and Mec-3 (LIM) adaptor protein, LIM domain only 
protein 4 (LMO4), regulates fear learning. The G protein-coupled 
receptor kinase-interacting protein-1 (GIT1) deficiency in mice causes 
psychostimulant-responsive attention deficit hyperactivity disorder 
(ADHD)-like phenotypes [4]. On the other hand, the hepatic tumor 
necrosis factor receptor-associated factor 2 (TRAF2) autonomously 
promotes hepatic gluconeogenesis by enhancing the hyperglycemic 
response to glucagon and other factors that increase cyclic adenosine 
monophosphate (cAMP) level, thus contributing to hyperglycemia in 
obesity [5]. In the present editorial, I briefly review a novel function of 
the adaptor/scaffold protein Cbl-interacting protein of 85 kDa (CIN85) 
in the regulation of behavior and metabolism. 

CIN85 was independently identified as CIN85 [6], regulator of 
ubiquitous kinase (Ruk) [7], SH3 domain-containing gene expressed 
in tumorigenic astrocytes (SETA) [8] and SH3 domain kinase binding 
protein 1 (SH3KBP1) [9]. These genes were isolated from either human 
(CIN85), rat (Ruk and SETA) or mouse (SH3KBP1) sources and show 
between 92% and 97% sequence identities, suggesting that they represent 
homologues of one gene. The CIN85 gene is localized on the distal arm 
of the X chromosome (Xp22.1-p21.3) and its length is approximately 
353.7 kb in humans (http://www.ncbi.nlm.nih.gov/sites/entrez?db=
geneandcmd=retrieveanddopt=full_reportandlist_uids=30011). The 
main 3.2 kb CIN85 mRNA is expressed in all adult and newborn tissues 
[6,7]. Owing to alternative splicing and the use of different promoters, 
multiple CIN85 mRNA signals have been detected, which showed a 
more restricted pattern of expression [7]. CIN85 is composed of three 
N-terminal SH3 domains, followed by a centrally located proline-rich
region and a C-terminal coiled coil domain [10]. Initially, CIN85 was
identified as a negative regulator of epidermal growth factor receptor
(EGFR) signaling and phosphoinositide 3-kinase (PI 3-kinase)
signaling pathways via its interaction with c-Cbl [6,7]. Then, CIN85
was identified as a central adaptor molecule involved in the recruitment
of the endocytic machinery required for the internalization of various
cell surface receptors, including receptor tyrosine kinases such as
EGFR [11,12], hepatocyte growth factor receptor (HGFR, Met) [13],
and vascular endothelial growth factor receptor (VEGFR) [14], and
also immunoglobulin IgE receptors in mast cells [15]. Recently, it has
been reported that CIN85 is involved in the regulation of the immune
system and cytokinesis. Using B cell-specific CIN85 knockout mice,
Kometani et al. [16] found that CIN85 links the B cell receptor to IκB
kinase-β/nuclear factor-kappa B (IKK-β/NFκB) activation, thereby
contributing to T cell-independent immune responses. Haglund et
al. [17] reported that Cindr, a Drosophila CD2AP/CIN85 ortholog,
interacts with Anillin and that depletion of either Cindr or Anillin
gives rise to binucleate cells and fewer intercellular bridges in  vivo,
therefore, Cindr is involved in complete and incomplete cytokinesis in
Drosophila. In the future, as these reports, a novel function of CIN85
might be identified since CIN85 is expressed ubiquitously.

Recently, we have found a novel function of CIN85 in the regulation 
of the signaling of behavior and metabolism [18]. In the mouse 
brain, both of the major isoforms expressed, CIN85-xl and CIN85-l, 
were found to be abundant in most brain regions examined [18,19]. 
Interestingly, CIN85-xl is expressed only in the central nervous system 
(CNS). Furthermore, CIN85 colocalizes with postsynaptic density 
protein 95 (PSD-95) at postsynaptic sites in the somatodendritic 
compartment, in which it frequently clustered in dendritic shafts, 
as well as within dendritic spines [18]. Dendritic spines are small 
protrusions extending from the surface of dendrites, which are believed 
to be the main sites of excitatory synapses and are thus vital centers for 
synaptic transmission in the brain [20]. To investigate the function of 
CIN85 in the CNS, we generated mice deficient in the two major CIN85 
isoforms expressed in the brain (CIN85-xl and CIN85-l) [18]. By 
homologous recombination, we deleted exon 2 of the CIN85 genomic 
locus (CIN85∆ex2). As expected, all CIN85 protein variants encoded by 
transcripts initiated from promoter #1 (CIN85-xl, CIN85-l, and the 
shorter CIN85-∆CP) were abolished in CIN85∆ex2 mice.

CIN85∆ex2 mice are viable and fertile, and display no obvious 
abnormalities in appearance. We subjected the CIN85∆ex2 mice to 
extensive analyses of a broad range of parameters in accordance 
with the physiological screens defined by the German Mouse Clinic 
(http://www.mouseclinic.de/). Among the parameters tested, the 
mice showed a clear knockout-specific phenotype in behavior and 
energy metabolism. When subjected to the modified hole-board test 
[21], which assays spontaneous behavior such as forward and vertical 
locomotor activity, speed of movement, and exploratory behavior in a 
novel environment, the CIN85∆ex2 mice showed significantly increased 
activities, as compared with the wild type. Specifically, the CIN85∆ex2 
mice exhibited increased forward locomotor activity, as manifested by 
increases in total distance travelled, number of line crossings, mean 
and maximum velocities, as well as turning frequency. In addition, 
CIN85∆ex2 mice showed enhanced exploratory behavior, namely, 
entering the board more frequently and exploring a larger number of 
holes on the board than the wild-type mice. 

Interestingly, the CIN85∆ex2 mice display abnormally high levels 
of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an 
important center for the coordination of animal behavior. Importantly, 
CIN85 localizes to the postsynaptic compartment of striatal neurons, 
in which it co-clusters with D2DRs. Moreover, it interacts with 
endocytic regulators such as dynamin and endophilins in the striatum. 
In neurons of the wild-type mice, CIN85 resides postsynaptically and 
associates with endocytic regulators, such as dynamin and endophilins, 
and it clearly has a crucial function in stabilizing endophilin binding 
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to D2DRs in the striatum. The internalization of D2DRs is caused by 
the coordination of these endocytic proteins. As a result, dopamine 
signals are attenuated, and then the appropriate locomotor activity is 
maintained (Figure 1). As a consequence, the absence of CIN85 gives rise 
to insufficient endocytic internalization of D2DRs owing to the defect 
of endophilin recruitment to the endocytic complex after dopamine 
stimulation, increasing striatal dopamine receptor levels, which can, at 
least in part, explain the enhanced locomotor and exploratory behavior 
we observe in the CIN85∆ex2 mice (Figure 1). The resulting increase in 
the expression levels of surface-associated D2DRs in CIN85∆ex2 mouse 
striatal neurons and the ensuing hyperactivity phenotype are in line 
with earlier findings, showing that activation of postsynaptic D2DRs 
results in increased locomotor activity and that D2DR knockout mice 
display reduced spontaneous movements [22,23]. 

When comparing CIN85∆ex2 mice with wild-type animals, we found 
that the mice deficient in CIN85-xl and CIN85-l showed abnormalities 
in several metabolic parameters, including higher energy uptake 
level, higher lean mass, and lower fat content. Both male and female 
CIN85∆ex2 mice showed a higher lean mass, as well as lower total and 
subcutaneous fat contents than their wild-type littermates. Female 
CIN85∆ex2 mice also showed a significantly increased energy uptake 
level compared with their wild-type littermates. However, CIN85∆ex2 
mice did not show any significant alterations in insulin metabolism. 
The explanation for this phenotypical trait may be directly linked to 
the observed alterations in dopaminergic activity, given the previously 
reported involvement of D2DR-mediated signaling in the regulation 
of appetite, energy intake, and obesity. Multiple studies have shown 
correlations between striatal D2DR expression level and body 
composition and between low D2DR expression level and obesity [24]. 
A recent report has furthermore showed a strong link between certain 
D2DR allelic variations and obesity, suggesting that individuals with 
certain genotypes resulting in dopaminergic hypofunction are prone 
to obesity [25]. An enhanced dopaminergic signaling is, therefore, 
consistent with the slim appearance of CIN85∆ex2 mice.

The involvement of dopaminergic signaling in the regulation of 
movement, emotion, reward feelings, and obesity is well established 
[26,27]. In agreement with this idea, aberrations in dopaminergic 
pathways have been strongly linked to various neurological or 
metabolic disorders, including Parkinson’s disease, schizophrenia, 
ADHD, Huntington’s disease, and obesity [26-28]. The molecular 
defects underlying these pathologies have not been fully characterized, 
but may include alterations in the expression levels of dopamine 
ligands and/or receptors, as well as defects in downstream signaling 
events [29,30]. 

CIN85 is a novel regulator of D2DR endocytosis, involved in 
controlling behavior as well as metabolism, and the use of CIN85∆ex2 
mice enables new developments in ADHD or obesity research. 
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Figure 1: Model for involvement of CIN85 in internalization of D2DR. CIN85 
localizes to the postsynaptic compartment of striatal neurons where it co-
clusters with D2DRs. CIN85 interacts with endocytic regulators such as 
dynamin, β-arrestin, and endophilins in the striatum (left panel). The absence 
of striatal CIN85 causes insufficient complex formation of endophilins with 
D2DRs in the striatum and ultimately attenuates D2DR endocytosis in 
striatal neurons in response to dopamine stimulation. The defect of D2DR 
endocytosis induces hyperactivity (right panel) [18].
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