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Introduction
Cell therapy is an emerging field in the development of regenerative

medicine, tissue engineering and cancer immunotherapy. Its efficiency
depends on the release of healthy cells to injured sites. These cells can
exert therapeutic effects, repair tissue and damaged organs or eliminate
malignant tumors. On the other hand, hydrogels, due to their
biochemical and physical properties, are materials of choice to mimic
the extracellular matrix. Devising strategies to improve cell survival in
hydrogels is a major challenge still in progress. To successfully design
hydrogels, it is important to known the cellular responses like
adhesion, migration, contraction and protrusion to environmental
signals. Mechanotransduction events by which cells sense their
environment were extensively investigated on mechanosensitive
proteins at focal adhesions and inside the cytoskeleton [1-4]. Extra-
and intracellular forces are transmitted across the cytoskeleton to the
nucleus. These forces can activate integrins at focal adhesions linked to

actin filaments, themselves connected to microtubules and to
intermediate filaments. The linker of nucleoskeleton and cytoskeleton
complex (LINC complex), which enables force transmission across the
nuclear envelope, connects cytoskeletal filaments to the nucleus where
lamins form an extended part of the LINC complex [5-10]. These
forces ultimately propagate to chromatin that represents a site of signal
integration and interpretation for activation or gene silencing [11-12].

Interestingly, for the first time, Rabineau et al. [13] focused on how
chromatin plasticity is influenced by a change of substrate rigidity. In
this context, several works revealed that the nucleus itself acts as a
cellular mechanosensor bypassing propagation of mechano-signaling
processes through the cytoplasm [8,14]. Rabineau et al. [13] developed
a hydrogel based on polyelectrolyte multilayers, made of poly(L-lysine)
and hyaluronic acid, (PLL/HA)24, capped with a poly(sodium styrene
sulfonate)/poly(allylamine hydrochloride), (PSS/PAH)n, multilayer
film (Figure 1) as matrix model mimicking the extracellular matrix
rigidity of biological tissues [15-17], on which epithelial PtK2 cells
were grown. In their model, the rigidity of the hydrogel increases with
the number n of PSS/PAH layer pairs [18].

Figure 1: Vertical section image of a (PLL/HA) 23-PLLFITC-HA capped with a (PSS/PAH)-PSSRho-PAH multilayer film observed by CLSM.

Two well-defined cytological compartments are structured in the
nucleus: the condensed, inactive heterochromatin and the extended,
active euchromatin. Heterochromatin is restricted to an irregular rim
located at the nuclear periphery and around the nucleolus as well as in
patches throughout the nucleoplasm, whereas euchromatin fills up the
majority of the nucleus. Rabineau et al. revealed that on stiff matrices,
chromatin is in its euchromatin form, whereas a soft matrix partially
induces remodeling in its heterochromatin form. On a very soft matrix
cells die by necrosis. The original idea of the authors is to influence the
cell fate by modifying the organization of the chromatin. The opposing
actions of histone acetyl transferases and histone deacetylases
(HDACs) dynamically control the acetylation status of chromatin and
hence chromatin compaction, by respectively loosening (euchromatin)
or condensing (heterochromatin) chromatin structures [19]. More

precisely, concerning the formation of heterochromatin, it has been
shown that both of H3K9me2/3 and H3K27me3 are associated with
this process in mammals [19]. H3K9me2/3 is able to recruit HP1α,
which plays a key role in the stability of the higher-order structure of
pericentric heterochromatin [20]. Interestingly, as both of the
G9a/GLP complex and Suv39h1/2 enzymes interact with DNA
methyltansferases and play a role in the maintenance of DNA
methylation [21,22], the writers of H3K9me2/3 are also required for
the formation of heterochromatin independently of HP1α at specific
chromatin loci. The writer for the establishment of H3K27me3 is the
PRC2 complex [23]. Recently, it has been shown that PRC2 and
H3K27me3 cooperate with H3K9 methylation to maintain HP1α at
chromatin [24].
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Rabineau et al. [13] use a drug that inhibits histone deacetylases,
namely trichostatin A (TSA), to maintain chromatin in euchromatin.
On the very soft matrices, they find that PtK2 cells treated by TSA
preserve acetylated forms of histones H3, maintain their chromatin in
euchromatin and a uniform nuclear distribution of HP1β. These
treated cells maintain also their nuclear envelopes intact as well as a
residual intermediate filament network around their nuclei. This allows
cells to survive in a non-adherent state without undergoing
proliferation suggesting that cells might enter in a quiescence state.
Importantly, when transferred on a stiff matrix these cells retain their
capacity to adhere, to spread and to enter a novel mitotic cycle in a way
that depends on their transcriptional competence. These findings
might be relevant to maintain cells in the best settings within synthetic
scaffolds and in tissue-derived matrices used in tissue regeneration
strategies.

The work of Rabineau et al. [13] represent the rational for detailed
molecular studies aimed at developing drugs to preserve important
nuclear structure, in particular euchromatin and the nuclear envelope,
under unfavorable mechanical environment. Chromatin organization
has a strong influence on the expression of the genome and chromatin
remodeling contributes to many cellular properties as for instance the
deformation of the nucleus as well as the cell pluripotency and the cell
differentiation [25]. Hydrogels with variable elastic moduli might
control the organisation of chromatin and therefore guide the fate of
cells of interest for tissue engineering. For example, the behavior of
several types of stem cells will be tested according to their level of
differentiation. An important aspect is to determine if the elastic
modulus durably remodels chromatin after mechanical pre
conditioning on a soft substrate. In recent works, the elastic modulus
can epigenetically reprogram the cells which maintain a "nuclear
mechanical memory" [26-28].
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